

universität**bonn**

<u>Cécile Lapoire</u> University of Bonn/CERN TIPP 2014, Amsterdam, 03/06/14

- ATLAS overview
- Pixel detector
- The Insertable B-Layer (IBL)
 - Motivation
 - Sensor and FE-I4 readout chip
 - Staves quality assurance
 - Final test (surface)
 - Staves selection and assembly
 - IBL lowering and insertion
 - Service testing (pit)
- Conclusion

ATLAS: OVERVIEW

General-purpose particle detector

LHC: p+/p+ collider
Data taken since ~2010
Up to 8TeV

- Dedicated detection systems
 - Muon chambers
 - Calorimetres
 - Trackers
 - Transition radiation tracker
 - Silicon strips (S¢T)
 - Pixel detector

ATLAS PIXEL DETECTOR

- 3 layers: 5, 8 and 12cm to the interaction point
- 3 disks per side
- Operated from 2009 to 2012
- Taken back to the surface in Apr. 2013 for a service upgrade and repairs
 - % of operational detector from 95% brought back up to 99%
- Back to the pit in Dec. 2013 fully reconnected in March 2014
 - % of operational detector: 98%
- Hybrid technology using bump-bonding
- FE-I3 Front-end technology
- Pixel size: 50x400μm² Resolution: 10μm (rφ) 115μm (z)
- 1744 modules (13/stave on barrel)
- >80M channels

BL: MOTIVATION First upgrade of ATLAS tracker

- Run II: Increase of LHC energy (8 \rightarrow 13TeV) and luminosity (10³⁴cm⁻²s⁻¹ \rightarrow factor 2.2)
 - Pixel detector: showed great performance but:
 - At the end of Run I, 6% dead module on b-layer
 - → Limitation in b-tagging
 - Designed for a luminosity of 10³⁴cm⁻²s⁻¹
 - FE-I3 readout inefficiency in b-layer will be 5% to 10% at L=2.2. 10³⁴cm⁻²s⁻¹
 - Original goal was to replace the b-layer
 - Impossible to extract a single layer out of the pixel detector
 - Ended up adding a layer: IBL (and extracting the whole package!)
 - Insertable b-Layer aim:
 - Compensate inefficiency, radiation damage and losses of pixels/modules
 - Improve precision measurement with an additional point closer to the interaction point, improve vertexing, tracking and <u>b-tagging</u> <u>performance</u>

Comparison of geometry with or without IBL

- 4th layer of pixel as part of the Pixel detector 1st upgrade
- Smaller beampipe: 2.9cm → 2.5cm
- 14 staves
- 3.3cm away from the interaction point
- New Front End technology: FE-I4B
- Smaller pixels 50x250μm²
 - Resolution <10 μ m (r ϕ) 80 μ m (z)
- Inactive edge reduction: 450μm in pixels → 200μm
- Cooling:
 - Pixel and SCT share the same cooling system
 - Using C₃F₈
 - New technology for IBL
 - CO₂: 2 cooling plants running in parallel

SENSORS

2 sensor technologies used: planar and 3D at high $|\eta|$

	Planar	3D
Technology	n in n	n in p
Depletion voltage before irradiation	80V	20V
Chip module	Double (1sensor→2FEs)	Single (1sensor→1FE)
Thickness	200μm	230µm

FRONT-END READOUT: FE-14 LKOM-EMP READOUT: FE-14

Chip size: ~2x2cm²

Array size: 80 colx336 rows

26880 pixels/chip

Column drain architecture with local hit storage (4 pixel region) → supports higher

occupancies without saturation

Readout speed: 160Mb/s

Compared to present Pixel Detector:

Lower noise and threshold operation

Radiation hard to >250Mrad – 5x more radiation tolerant

• FE-I4 will be a fantastic chip for evaluation of prototypes for ITK

FEI3

FEI4

STAVES QUALITY ASSURANCE

- Dedicated setup installed at CERN in the SR1 clean room to test the staves after assembly and rank them (tuning, source scans, etc.)
- Excellent results obtained for all produced staves
- The staves installed are close or below 1‰ defect

IBL: FINAL TEST

Goal: test combination of off-detector components (powering, control system, data acquisition) and on-detector components in their final configuration to validate complete functionalities – before taken to the pit

- Using 2 IBL staves (7&8) mounted temporarily on the IPT (Inner Positioning Tube)
- Setup was ready in January and operated for 2 weeks
- Used CO₂ cooling operating conditions + 15°C flushing dry air (2-3% relative humidity)
- Compared calibration/tuning results with results obtained during QA in Summer 2013

FINAL TEST OUTCOME LINAL TEST OUTCOME

- Very useful and successful service testing rehearsal
- Connectivity understood and corrected on many levels (LV, HV, temp. control, etc.)
- Excellent performance obtained on working FEs: tuning down to 1500e
- No increased noise observed when running threshold scan on neighbouring stave
- First DAQ tests in close-to-real conditions

Example of a cosmic track along the entire FE (Stave 7, A8-2)

IBL ASSEMBLY IBL HOSEINIBLE

Staves were assembled around the IPT on surface

 Stave loading location optimized to have defects distributed as homogeneously as possible over the whole detector

IBL LOWERING AND INSERTION

- IBL package transported into the ATLAS cavern on the 5th of May
- Inserted inside the pixel detector on the 7th of May
- Everything went smoothly

SERVICE TESTING

- Goal: test and qualify full chain of electrical services from the counting room (PP4) to the end of the IBL (PP1) and back
 - Includes:
 - Opto, LV, HV and Environment checks
 - Basic continuity and interlock checks PP4/PP1 cross-checks
 - Doesn't include DAQ and Cooling tests
- Essential before connecting On-detector permanently to Off-detector parts
- Successfully completed on May, 19th

PP1 PP2 PP4

- Detector connection in the pit: planned for this week
- Cooling service connection and final tests to be done by the middle of June
- Commissioning of the full pixel package over the summer 2014: current 3-layer Pixel Detector+IBL

- FE-I4B chip working very well
- 1st time 3D modules used for a detector
- IBL current status:
 - Staves tested, selected and installed
 - Each close or below 1‰ defect
 - On/Off-detector components compatibility successfully tested on surface
 - Detector inserted
 - Off-detector components successfully tested in the pit

BackUp

SOURCE SCAN

Am sources at end of staves Sr sources in the middle

~1h10 1500e tuning (additional noise masks applied)

