

The Upgrade of the ALICE Inner Tracking System — Status of the R&D on Monolithic Silicon Pixel Sensors

Jacobus van Hoorne on behalf of the ALICE collaboration

CERN and TU Vienna

TIPP2014 , Amsterdam - 03.06.2014

1 A Large Ion Collider Experiment (ALICE)

2 ALICE Inner Tracking System (ITS) upgrade

3 Status of R&D on monolithic silicon pixel sensors

2 / 20

1 A Large Ion Collider Experiment (ALICE)

2 ALICE Inner Tracking System (ITS) upgrade

Status of R&D on monolithic silicon pixel sensors

ALICE with its present ITS

- ALICE is the experiment at the LHC optimized for A-A and p-A
- Its main goal is the study of the Quark-Gluon Plasma

Upgrade of the ALICE ITS

4 / 20

Motivation:

▶ High precision measurements of rare probes at low p_T

$\textbf{Requirements} \Rightarrow \textbf{Targets:}$

- Large sample of events recorded on tape
 - ▶ Pb-Pb recorded luminosity: 10 nb⁻¹ plus pp and p-A data → gain factor 100 in statistics for minimum bias trigger over current program
- Improved vertexing and tracking capabilities

Strategy:

- New silicon trackers:
 - Inner Tracking System (ITS) covering mid-rapidity
 - Muon Forward Tracker (MFT) covering forward rapidity
- Upgrades
 - TPC
 - Online systems
 - Readout of several detectors

C. Lippmann, 2.a Experiments and Upgrades, Session 1: *Upgrade of the ALICE detector*

J. W. van Hoorne (CERN/TU Vienna)

Upgrade of the ALICE ITS

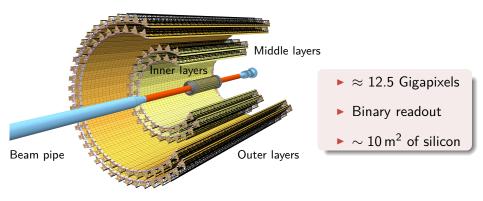
1 A Large Ion Collider Experiment (ALICE)

2 ALICE Inner Tracking System (ITS) upgrade

Status of R&D on monolithic silicon pixel sensors

ALICE ITS upgrade design objectives

- Improve impact parameter resolution by factor $\approx 3(5)$ in r- $\phi(z)$ at $p_T = 500 \text{ MeV/c}$
 - move closer to IP (position of first layer): $39 \text{ mm} \rightarrow 22 \text{ mm}$
 - ▶ reduce material budget: X/X_0 /layer: $\sim 1.14\% \rightarrow 0.3\%$ (inner layers)
 - reduce pixel size: $50 \,\mu\text{m} \times 425 \,\mu\text{m} \rightarrow O(30 \,\mu\text{m} \times 30 \,\mu\text{m})$


(2) Improve tracking efficiency and p_T resolution at low p_T

- increase granularity: 6 layers \rightarrow 7 layers
- **Fast readout** (now limited at 1 kHz with full ITS):
 - ▶ Pb-Pb: > 50 kHz
 - pp: several 100 kHz
- Fast insertion/removal
 - possibility to access for yearly maintenance

The new ALICE ITS will fully replace the present ITS

Layout of upgraded ALICE ITS

Radiation level (innermost layer, including a safety factor 10):

- $\blacktriangleright~700\,krad$ (TID) and $1\times10^{13}\,1\,MeV\,n_{eq}$ (NIEL)
- Radial coverage: 22 mm to 400 mm
- ▶ η coverage: $|\eta| \le 1.22$, for tracks from 90 % most luminous region

Technology choice and expected improvements

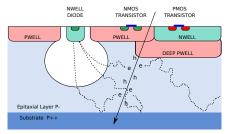
Very thin sensors Very high granularity Monolithic silicon pixel sensors Large area to cover Modest radiation levels ALICE. CERN-LHCC-2013-024 ALICE, CERN-LHCC-2013-024 (100 ق Efficiency (%) 8 001 ALICE Current ITS, Z (Pb-Pb data, 2011) Pointing resolution 200 120 120 Upgraded ITS, Z Current ITS, re (Pb-Pb data, 2011) Upgraded ITS, rg ALICE Current ITS Upgraded ITS 40 IB: X/X.= 0.3%: OB: X/X = 0.8% 100 20 50 0 10-1 10^{-1} 10 10 p_ (GeV/c) p_ (GeV/c)

Exected improvement of pointing resolution (left) and tracking efficiency (right)

A Large Ion Collider Experiment (ALICE)

2 ALICE Inner Tracking System (ITS) upgrade

3 Status of R&D on monolithic silicon pixel sensors


10 / 20

Pixel chip technology and working principle

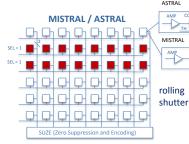
11 / 20

- Monolithic silicon pixel sensors using TowerJazz 0.18 µm CMOS Imaging Process
 - High-resistivity epitaxial layer on p-type substrate
 - Special deep p-well for full CMOS within the matrix (based on the experience of RAL)
 - Working principle:

schematic cross section of pixel of monolithic silicon pixel sensor NWELL diode output signal:

 $V \sim Q/C$

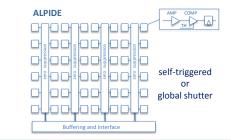
- Mitigate charge spread over different pixels
- Minimize capacitance:
 - diode surface
 - depletion volume
 - ightarrow (reverse) biasing


Pixel chip architectures under development

COMP

Different architecture design streams:

— ASTRAL (MISTRAL):



based on the experience of the STAR PXL detector

General requirements:

- Chip size: 15 mm × 30 mm
- Sensor thickness: 50 μm

- ALPIDE:

A. Collu, poster 26, *An innovative Monolithic Active Pixel Sensor for the Upgrade of the ALICE ITS*

- Spatial resolution: $\approx 5 \, \mu m$
- Integration time: < 30 µs</p>
- Power density: <100 mW/cm²

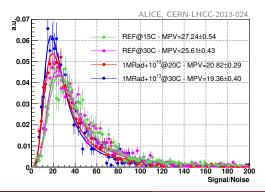
Upgrade of the ALICE ITS

Pixel chip - R&D

- Dedicated R&D started in 2011 :
 - Improve Signal/Noise Ratio (SNR):
 - optimization of charge collection diode, apply reverse-bias voltage
 - optimize thickness and resistivity of epitaxial layer
 - Study different front-end and readout architectures
 - reduce power consumption and integration/readout time
 - Study radiation effects
- Several small and large scale prototypes, each focussing on particular aspect:

Architecture	Analogue	Digital	
		small-scale	full-scale
ASTRAL (MISTRAL)	MIMOSA-32-X MIMOSA-34	MIMOSA-22THR-X AROM-0/1	FSBB
ALPIDE	Explorer-0 Explorer-1	pALPIDE	pALPIDEfs

J. W. van Hoorne (CERN/TU Vienna)

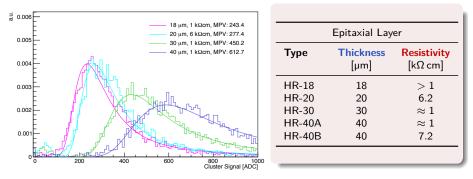

Upgrade of the ALICE ITS

MIMOSA-32ter

ASTRAL (MISTRAL)

analogue prototype with in-pixel pre-amplification & average noise subtraction \rightarrow in-pixel circuitry optimisation, radiation hardness

▶ Seed pixel SNR before and after irradiation with 1 Mrad (TID) and 1×10^{13} 1 MeV n_{eq} (NIEL) at 20° and 30° C

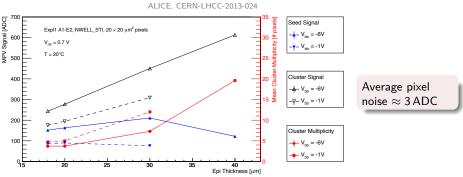

 Adequate radiation hardness

SNR measured for MIMOSA-32ter sensors (on an HR-18 wafer type) in the SPS with a 120 GeV/c pion beam

Explorer-1

analogue prototype with variable integration and readout time, 20 and 30 μ m pitch \rightarrow charge collection, reverse biasing, noise

Study of different starting wafers

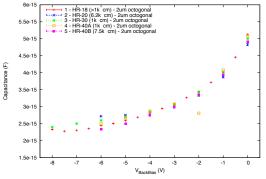

Cluster signal for different epi thicknesses at $V_{bb} = -6 V$ measured at test beam at DESY with 3.2 GeV/c electron beam (pixel size $20 \times 20 \,\mu m^2$)

J. W. van Hoorne (CERN/TU Vienna)

Upgrade of the ALICE ITS

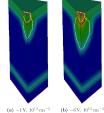
ALPIDE

Explorer-1

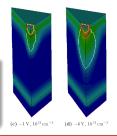


Seed signal, cluster signal and multiplicity vs. epi thickness for $V_{bb} = -1 V$ and -6 V

- Reverse bias: significant increase of SNR
- Cluster charge increases linearly with the epi layer thickness
- Cluster size increases for thicker epi layer thicknesses
- ▶ Largest SNR (seed pixel): HR-30 for $V_{bb} = -6$ V, HR-20 for $V_{bb} = -1$ V


ALPIDE

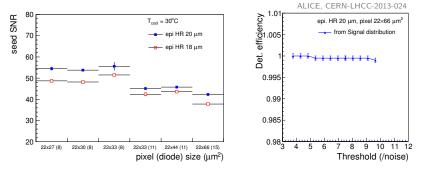
Explorer-1


ALPIDE

TCAD simulations

Pixel capacitance vs V_{bb} for different starting wafer types

- Pixel capacitance drops with increasing reverse bias, in agreement with simulated size of depletion region
- ► Effect similar for all starting materials → minor influence of epi resistivity for current pixel layouts


17 / 20

MIMOSA-34

analogue prototype with no in-pixel pre-amplification and CDS circuitry

 \rightarrow sensing node optimisation as function of pixel size and epitaxial layer characteristics

 \blacktriangleright SNR of seed pixel for pixels in the range $22\times27\,\mu\text{m}^2$ to $22\times66\,\mu\text{m}^2$

Measured at test beam at DESY with 4.4 GeV/c electron beam

High detection efficiency also for large pixels

ASTRAL (MISTRAL)

ALPIDE

ASTRAL (MISTRAL)

MIMOSA-22THR

in-pixel pre-amplification and CDS circuitry, parallel column readout and discriminators at end of column, $22 \times 33 \,\mu m^2$ pixels \rightarrow used to validate upstream part of MISTRAL and most of ASTRAL readout

pALPIDE

in-pixel front-end, binary readout, in-matrix sparsification, 22 μm pitch

 \rightarrow used for optimization of in-pixel front-end with binary readout and priority encoder

• Measured at **test beam** at DESY with 3 to 6 GeV e^- and e^+ beams:

- Detection efficiency: >99 %
- Fake hit rate: $\approx 10^{-8}/(\text{event} \times \text{pixel})$
- Spatial resolution \approx 5 μ m

Performance of small scale digital prototypes complies with requirements

Upgrade of the ALICE ITS

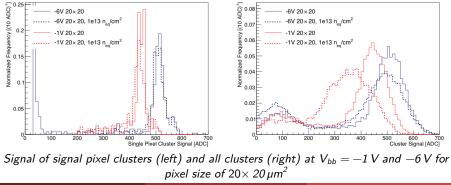
- New ALICE ITS with 7 layers of monolithic silicon pixel sensors will be installed during LS2 of the LHC in 2018/19
- Different architectures for the pixel chip have been explored
- Several small-scale prototype sensors have been characterized in test beam and laboratory
 - adequate radiation hardness has been proven
 - reverse biasing: significant increase of SNR
 - effects of different epi layer thicknesses and resistivities:
 - regions of parameter space could be excluded

 approaching optimum
 - epi resistivity has minor influence for current pixel layouts
 - performance of small scale digital prototypes complies with requirements of pixel chip
 - Full-scale prototypes are currently beeing characterized

on 12th March 2014

Spare slides

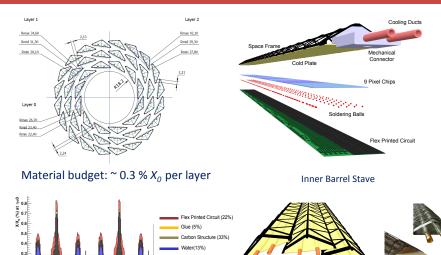
Parameter	Inner Barrel	Outer Barrel
max. silicon thickness (µm)	50	
spatial resolution (µm)	5	30
chip dimensions (mm ²)	15 imes 30	
max. power density (mW)	300	100
max. integration time (μ s)	30	



Explorer-0

analogue prototype with variable integration and readout time, 20 μm and 30 μm pitch

ightarrow for pixel layout optimisation (charge collection, reverse biasing, noise)


 Pixel response to X-rays from ⁵⁵Fe source before and after irradiation with 1 × 10¹³ 1 MeV n_{eq} (NIEL)

ALPIDE

Inner Barrel

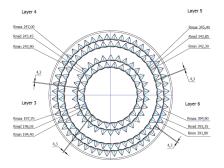
0.4 0.6 0.8 1 ¢ (rad)

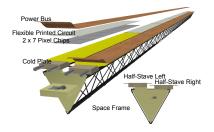
0.2

0.1 0₀

Upgrade of the ALICE ITS

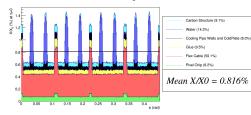
Cooling pipes wall (2%)


Pixel Chip (26%)


Mean X/X0 = 0.282%

TIPP2014 - 03.06.2014 24 / 20

Outer Barrel



Outer Barrel Stave

Material budget: ~ 0.8 % X_0 per layer

