

Recent results of diamond radiation tolerance

Dmitry Hits for RD42 Collaboration

Outline

- Study of radiation hardness
 - Measurement procedure
 - Analysis procedure
 - Results
 - Comparison with FLUKA Displacement Per Atom (DPA)
- Pulse height vs rate study
 - Measurement procedure
 - Analysis procedure
 - Results
- Conclusions

Beam test procedure

- CERN SPS H6A line
 - 120 GeV protons
 - 3-4k triggers per spill (10 sec)
- Strasbourg telescope
 - VA2 readout chip
 - few μm resolution
- Measure each sample at 4 different bias voltages
 - low (~500 V), high (~1000 V)
 - positive, negative polarities
- "Pump" each sample with a source before the measurement and before polarity change
 - filling the active traps

article Physics

Analysis procedure

- Perform pedestal analysis and subtraction
 - Correct for the common mode
- Cluster channels above threshold(s)
 - "seed" threshold, "hit" threshold
- Select events with only one cluster in each telescope plane
- Align telescope
- Select events with only one cluster in each telescope plane and only one cluster in the diamond plane
- Align diamond plane to the telescope
- Transparent analysis
 - require only "good" tracks in the fiducial region of the telescope
 - no requirement on the diamond plane unbiased

Transparent analysis

- Telescope plus DUT is aligned on a subset of tracks
 - not used in analysis
- Use telescope to predict hit position in the DUT
- In 10 strips surrounding the predicted position find two neighboring strips with the largest pulse heights
 - Measure cluster pulse height

ETH Institute for Particle Physics

Pulse height for single crystal CVD diamond: 800 MeV proton irradiation

- single crystal CVD diamond sample
 - CCD is measured = to thickness for non-irradiated
- Noise is on the order 80-110 electrons
 - < 1.6% of the mean pulse height for the highest irradiation dose
- Pulse heights for 2 highest out of 10 strips closest to the predicted hit position

Noise in non-hit channels Common Mode corrected

CCD vs Mean Free Path

- We measure CCD
- Radiation-induced traps in fact decrease the mean free path (mfp)
- CCD~ mfp_e+mfp_h in thick detectors t >> mfp, CCD
- CCD degradation formula not applicable to scCVD since $CCD_0 = t$; mfp₀ $\rightarrow \infty$
- Relation CCD \leftrightarrow mfp for homogeneous material

Damage curves in the subsequent slides are fitted with the following ansatz

$$rac{1}{\lambda} = rac{1}{\lambda_0} + k_\lambda \Phi$$

- Each irradiation set fitted separately assuming ansatz $\frac{1}{\lambda} = \frac{1}{\lambda_0} + k_\lambda \Phi$
- The damage constant is the average between various irradiation sets

ETHzürich 24 GeV protons: CERN PS

- $k_{\lambda} \sim 0.62 \pm 0.07 x 10^{-18} \ \mu m^{-1} cm^{-2}$
 - pCVD offset by $\sim 5x10^{15}$ cm⁻²
 - pCVD is considered as a "pre-damaged" scCVD
 - Both pCVD and scCVD have the same damage constant

800 MeV, 70 MeV, 25 MeV protons 300 MeV/c pions

Summary of RD42 test beam results

- $k_{\lambda} (24 \text{ GeV p}) \sim 0.62 \pm 0.07 \times 10^{-18} \, \mu \text{m}^{-1} \text{cm}^{-2}$
 - ~10% uncertainty on relative k_{λ}

particle	Energy	Relative k
Ρ	24 GeV	
	800 MeV	I.7
	70 MeV	2.7
	25 MeV	4.2
π	300 MeV/c	2.9

DPA comparison

- DPA based on Displacement Energy
 - Diamond: 43.3eV
 - M. Guthoff et. al. <u>arXiv:1308.5419</u>
- Reasonable agreement at high energies
 - DPA scaling over predicts at low energies

Pulse heights at high rates

Dmitry Hits, TIPP'14, 3 June 2014, Amsterdam

Particle Physics

Indication of pulse height dependance on rate in CMS-PLT detector

- Pixel tracking detector based on scCVD diamond sensors
 - Installed on CASTOR platform for 2012 LHC run, experienced high rate of low energetic charged hadrons and neutrons (5e13 neutrons and 5e13 charged hadrons)
 - High pulse height before collisions (beam halo)
 - Pulse height drops after beam brought into collision
 - Raising the HV brings back charge collection even at full luminosity

14

ETH *zürich* Indication of pulse height dependance on rate in PLT detector

• Shift in pulse heights with rate

PSI Test Beam Setup

DUT box

ETH Institute for Particle Physics

ETH Institute for Particle Physics

ETH Institute for Particle Physics

Test beam setup

- 250 MeV/c "mostly" pions
- Rate determined on the "small" 6 mm x 6 mm scintillator
- Part of the runs were taken with the "small" scintillator as a trigger
 - large background
- Last 13 runs were taken with a masked area of the pixel detector as a trigger
 - small background

"small" scintillator

DUT

ETH Institute for Particle Physics

DAQ: raw signals

- Pulse height amplified with Ortek 142A pre-amp and Ortek 450 shaping amp
 - **_** 300 ns shaping time
- Digitization performed with DRS4 evaluation board
 - **_** 1024 sampling points
 - slowest sampling speed 0.7 GSPS
- Integration region from 320 ns to 920 ns

Masked pixel trigger

- Using diamond as a signal to pixel detector to find a "shadow" of the diamond
- Mask all pixels outside the diamond shadow
- Use "FastOr" of the masked pixel detector as a trigger for the diamond
- Large improvement in signal to background ratio

Results

Dmitry Hits, TIPP'14, 3 June 2014, Amsterdam

ETH zürich Single crystal CVD diamond n-irradiated in JSI, Ljubljana

- Irradiation dose $5x10^{13}$ n/cm²
- Runs at 500 V with masked pixel trigger
- Slight but obvious rate dependance

ETH zürich Poly-crystalline CVD diamond n-irradiated in JSI, Ljubljana

- Irradiation dose 5×10^{13} n/cm²
- Runs are at 500 V with masked pixel trigger
 - Run 30 is non irradiated single crystal for calibration
- Mean for poly 18.9 (CCD \sim 200 um) (measured from 5 AU to 100 AU)
- Mean for SC 47.2 (CCD ~500 um) (measured from 5 AU to 100 AU)
- No noticeable rate dependance

Dmitry Hits, TIPP'14, 3 June 2014, Amsterdam

ETH zürich Summary of the rate dependance

- Plot most probable pulse height versus rate per cm²
 - Irradiated single crystal diamonds show slight rate dependence
 - Irradiated poly crystalline diamond does not show rate dependance

Rate dependance

poly CVD - neutron irradiated JSI, 5x10¹³ n/cm² scCVD - neutron irradiated JSI, 5x1013 n/cm2

Rate (Hz/cm2)

Conclusions

- Radiation Hardness of CVD diamond is nearly quantified
 - pCVD and scCVD have the same damage constant.
- Proton results nearly complete
- Pion initial results look good
 - Both pCVD and scCVD irradiated.
- Pulse height dependance on rate of incoming particles was studied.
 - Irradiated single crystal diamond irradiated with reactor neutrons to 5x10¹³ n/cm² exhibits slight rate dependence
 - Polycrystalline CVD diamond irradiated with reactor neutrons to 5x10¹³ n/cm² does not show any noticeable rate dependance

Future study of high rate dependance

- Pixel devices
 - with analog readout for use in CMS-PLT
- Irradiated diamonds to higher dose
 - $1 \times 10^{14} \text{ n/cm}^2$
- Proton irradiation
 - $5 \times 10^{13} \text{ p/cm}^2$

article Physics

- New polyCVD diamonds from II-VI corporation
 - higher collection distance (~ 300 um)
- Time evolution of pulse height
- Different metallization procedures

extra slides

Dmitry Hits, TIPP'14, 3 June 2014, Amsterdam

Gain change correction

- In attempt to protect the DRS4 readout after Run 16 reduced Unipolar Output Range on Research Amp from 10V to 6V
 - gain have changed
- Use un-irradiated single crystal to determine the gain scaling factor
 - 0.658
- Run 14 was triggered on "small" scintillator
- Run 30 was triggered on masked pixel chip

ETH zürich 2A87-H poly non-irradiated

0.014

0.012

0.01

- History of 2A87-H during the test beam
 - -1000 V
 - Super Pump 30min substrate side/Super Pump 1hr growth side
 - Super Pump 20min growth side
 - Run 15, 16 only rate change
 - Changed gain from 10 to 6 after run 16
 - Run 17,18 new gain
 - Runs 11-16 are scaled down by 0.658 to match the new gain
- No noticeable rate dependance

Run 15

Run 16

Run 17

0.5 kHz/cm²

11.2 kHz/cm²

22.4 kHz/cm²

35 kHz/cm²

100

2A87-H

- Did not have time to run with pixel map
- History of 2A87-H
 - Super Pump 30min substrate side/Super Pump 1hr growth side
 - Runs 11 13 only change voltage no pumping in between
 - Super Pump 20min growth side
 - Run 15, 16 only rate change
 - Changed gain from 10 to 6 after run 16
 - Run 17,18 new gain

TH Institute for Particle Physics

 Runs 11-16 are scaled down by 0.658 to match the new gain

2A87-H

ETH zürich Single crystal CASTOR irradiation (PLT S97)

- Irradiation dose equal amounts of protons and neutrons $5x10^{13}$ n/ cm² and $5x10^{13}$ p/cm²
- Runs at 500 V with masked pixel trigger
- Slight rate dependance

