

Development of Hybrid Avalanche Photo Detector and its Readout Electronics for the Belle II Aerogel RICH counter

Shuichi Iwata

Tokyo Metropolitan University

I. Adachi², K. Hara², T. Iijima³, S. Iori⁴, H. Kajiwara¹, H. Kakuno¹, R. Kataura⁵, H. Kawai⁶, T. Kawasaki⁵, T. Kobayashi⁵, S. Korpar⁷, P. Krizan⁷, S. Nishida², S. Ogawa⁴, R. Pestotnik⁷, L. Santelj⁷, M. Shoji², T. Sumiyoshi¹, M. Tabata⁸, E. Tahirovic⁷, T. Uchida², K. Yoshida¹, Y. Yusa⁵

¹Tokyo Metropolitan Univ., ²KEK, ³Nagoya Univ., ⁴Toho Univ., ⁵Niigata Univ., ⁶Chiba Univ., ⁷Joseph Stephan Institute, ⁸JAXA

(Belle II Aerogel RICH group)

Contents

- Introduction
- Status of Development
 - Hybrid Avalanche Photo-Detector
 - Readout ASIC
 - Related Electronics
- Summary

Belle II experiment

Belle experiment

- KEKB accelerator/Belle detector: B-Factory experiment
- Discovery of CP Violation in B system
- Verification of Kobayashi-Maskawa mechanism
- Finished in 2010.6

• Upgrade to SuperKEKB accelerator / Belle II detector

- Integrated Luminosity: 50 ab⁻¹
- Physics Goal: Search for New Physics

Aerogel RICH (A-RICH)

Proximity-Focusing Ring Imaging Cherenkov counter using aerogel as radiator

S. Iwata June 6, 2014

Aerogel RICH (A-RICH)

S. Iwata June 6, 2014

144-ch HAPD Hybrid Avalanche Photo-Detector

We have been developing the HAPD with Hamamatsu Photonics K.K. since 2002.

Structure of the HAPD

420 modules will be installed in Belle II.

Specification

# of channel	$12 \times 12 = 144$
tube size	73 × 73 mm ²
effective area	~65%
pixel size	4.9 × 4.9 mm ²
APD capacitance	80 pF
typical QE	28% @400 nm
Total gain	\sim 7 × 10 ⁴

144-ch HAPD Hybrid Avalanche Photo-Detector

We have been developing the HAPD with Hamamatsu Photonics K.K. since 2002.

420 modules will be installed in Belle II.

Good single photon separation in every pixel.

Specification

# of channel	$12 \times 12 = 144$
tube size	73 × 73 mm ²
effective area	~65%
pixel size	4.9 × 4.9 mm ²
APD capacitance	80 pF
typical QE	28% @400 nm
Total gain	\sim 7 × 10 ⁴

Radiation Hardness of HAPD

HAPDs will be used in radiation environment for **10 years** operation.

Neutrons: 1x10¹² neutrons/cm² (1 MeV equiv.)

Neutrons induce **lattice defects** in APD bulk region. They cause **increasing leakage current**.

→ S/N become worse

We changed **P and P+ layer** structure in APD. Thinner **P** : To **suppress** increase of current. Thinner **P+** : To **improve** bombardment gain.

S. Iwata June 6, 2014

Radiation Hardness of HAPD

HAPDs will be used in radiation environment for **10 years** operation.

Gamma-ray: 1 kGy

Charge-up around the structure on APD surface occurred by gamma-ray. **Breakdown voltage is degraded**.

→ lowers Avalanche gain.

We changed surface structure on APD to prevent it, and carried out radiation tests after neutron test.

S. Iwata June 6, 2014

Readout Electronics

- High-gain, low-noise Amp.
- Hit/No-Hit information
- Space is limited

Readout ASIC

- 36 channels/chip (=4 chips for 1 HAPD)
- variable shaping time
 - 100~200 ns for noise reduction due to neutron irradiation

related circuit for A-RICH.

We developed

original ASIC and

Neutron test in 2013

Readout Electronics

- High-gain, low-noise Amp.
- Hit/No-Hit information
- Space is limited

Readout ASIC

- 36 channels/chip (=4 chips for 1 HAPD)
- variable shaping time
 - 100~200 ns for noise reduction due to neutron irradiation

Front-end board

- FPGA
 - Process Digital hit signals treatment
 - Setting ASIC parameters
- Merger system
 - Merge data from 5~6 FE board
 - Suppress size of signals

Status of Development

HAPD

- Mass production already started in 2013.
 - **420**(main)+Spare = 450 in total
 - Delivery Schedule
 - Aug. 2013 ~ Sep. 2014
 - \cdot 30 ~ 40 samples every month
- Quality check is on-going at KEK.
 - Quantum Efficiency (QE)
 - Dead channel check
 - Leakage current
 - Noise level
 - Gain
 - 2D Hit-map

QE Measurement Result

Requirement	Measured (Average)
28% (Typically)	30.0%
>24%	(RMS 3.7%)
(#samples = 193	

Good Sample Selection

	#HAPDs
Good	134 (86%)
Low Quality	5 (3%)
Under Investigation	15 (10%)
Rejected	2 (1%)
Checked (Total)	156

(Mar. 2014)

Readout ASIC

- The ASIC is designed in order to satisfy our requirement.
- ASIC production had been finished.
 - 2,500 samples had been produced.
- We will choose good chips from them.
 - **1,680** chips are needed.
 - Test system is developed for this purpose.

Readout ASIC

- The ASIC is designed in order to satisfy our requirement.
- ASIC production had been finished.
 - 2,500 samples had been produced.
- We will choose good chips from them.
 - 1,680 chips are needed.
 - Test system is developed for this purpose.

Dead channel Appearance

Tested	Dead
6,480 ch.	47 ch.
(= 180 chips)	(in 30 chips)

Related Electronics

Front-end board

- 4 ASIC and FPGA
- The final version is under designing

Merger system

Connector side

– Designing the final version.

- Merge data from 5-6 HAPDs
- Send data to central DAQ
- Trigger/clock distribution
- Configuration for the front-end
- Communication test is on-going with prototype.

Merger Prototype

Mass Production Status

• HAPD:

- Delivery is delayed about a few months.
- Quality check of delivered HAPDs are mostly done.

Investigation of Noisy Sample

We found some samples are noisy in 2D hit-map.

This noise occurred **after light exposure**.

Noise in most samples of this reason disappear in ~30 min after light exposure and HV ON.

→ ~30 min: **10** samples, >1hour: **7** samples

Q 200 Number of HAPD • Delivered • Measured 150 50 0 100 100 200 30 40 Week from Sep. 2013

Trends of HAPD Production

Mass Production Status

• HAPD:

- Delivery is delayed about a few months.
- Quality check of delivered HAPDs are mostly done.

• Electronics:

- The ASIC production was finished.
- Quality check is on-going.
 - We developed the test system for produced ASICs.
- Front-end board and Merger are under final design.
 - Mass production will start in this year.

Trends of HAPD Production

ASIC test system

Schedule

Summary

- The **Belle II** experiment will start from 2016.
- We have been developing Aerogel RICH (A-RICH) using 144-ch HAPD for the end-cap PID device.
- We have been producing components of A-RICH.
- HAPD:
 - Mass production had been started in 2013.
 - Noise issue are found, further investigation is on-going.
 - Delivery schedule is delayed, it will finish in this year.

Readout ASIC:

- Mass production had finished \rightarrow ASICs are under quality check.
- Other Electronics:
 - Production of Front-end boards and Merger system will start in this year.
- All components will be ready in this year. We will start assembling the A-RICH counter in 2015.

Plan

- After assembly of the counter, we are planning the cosmic test.
- Installation of A-RICH in the Belle II is in 2015.

S. Iwata June 6, 2014

Back up

SuperKEKB accelerator

Tolerance to Magnetic field

Neutron Test 2013

Gamma-ray Hardness

Chip Current VS Bias

Bias voltage scan during the irradiation

γ-ray dose: ~950Gy

Breakdown is not observed up to maximum bias voltage for all the HAPDs

S. Iwata June 6, 2014 Technology and Instrumentation in Particle Physics 2014 @ Amsterdam 6

Readout ASIC

- ASICs: 2500 chips
 - Already finished mass production.
 - Quality check is on-going.
 - We developed the **test system** for mass productions.
 - Max. 6 ASICs are available.
 - Adopt removable sockets _
 - TCP/IP communication
 - We are preparing automatic test software.

Front-end Board

- Front-end boards are under final design.
 - 4 ASIC + Xilinx FPGA (Spartan6)
 - Correct hit information from HAPD
 - Set ASIC parameters
 - HAPD bias voltage distribution
- Basic performance are confirmed by beam test.
 - @DESY, 2013
- Mass production will be start in this year.

Attached on HAPD

Merger system

- Merger Board: > 72 units
- Specifications are almost fixed
 - Collect hit data from 5~6 FE boards
 - Distribute the trigger
 - Set parameters

✓ Data transfer
✓ Slow control
✓ Trigger, Clock
✓ JTAG for FPGA

Merger system

- Communication test with Prototype is on-going.
 - Slow control for FE boards by Belle2Link
 - Readout from 1~multi FE board(s)
 - Configuration of FPGA on a FE board

QE measurement

S. Iwata June 6, 2014

Noisy HAPD Issue

Investigation for productions

Some troubles are found from some HAPDs. They are also investigated by our system.

*** QE 2D Distribution**

- We found some samples with funny structure of QE by our measurement system.
- This problem is not resolve, we and Hamamatsu ٠ Photonics are researching about the detail cause.

