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Ultimate Goal

A Neutrino Factory based on muon storage ring is the ultimate tool for studies of
neutrino physics. It is also a step towards a muon collider.
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lonization cooling has never been demonstrated in practice but has been shown by
simulation and design studies to be an essential factor both for the performance and for
the cost of a Neutrino Factory or Muon Collider.
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lonization Cooling: Principle

The principle of ionization cooling relies on the cooling rate formula,
expressing the emittance variation in a medium with thickness X (g- cm?) due
to ionization(cooling) and multiple scattering(heating):

den €n <dEH> 5:(0.014GeV)?

dX ~ " B2E,\ aX 283E, m, X,

where ¢, is the normalized 4D emittance of the beam, f3; is the betatron
function, and 3 is the velocity of the particle. The ideal cooling channel
should produce the lowest possible emittance:

_ B:(0.014GeV)* / dE, \ "
= T 28m X aX

Hence, the goal is to minimize the 8; and maximize Xo<d£‘(‘ > Therefore liquid

hydrogen has been chosen for the first realization of a cooling channel.
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lonizatoin Cooling: Concept

Due to the short muon lifetime (2.2 us), ionization cooling must be used. The
cooling of the transverse phase-space coordinates of a muon beam can be
accomplished by passing it through a light energy-absorbing material and an
accelerating structure, both embedded within a focusing magnetic lattice.
Longitudinal and transverse momentum are lost in the absorber while the
RF-cavities restore only the longitudinal component.
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Muon lonization Cooling Experiment (MICE)

The Muon lonization Cooling Experiment (MICE) aims to construct a cooling
cell with all the equipment necessary to measure the emittance of a muon
beam before and after this cell based on single particle measurements and
achieve 10% cooling of 200 MeV/c muons. The cooling cell will be
sandwiched between two identical trackers inside 4T superconducting

solenoids, complemented by upstream and downstream particle detectors.
RF Cavities =

Liquid Hydrogen Absorbers
Spectrometer Solenoids

Ruslan Asfandiyarov (University of Geneva), EMR TIPP2014, Amsterdam, June 2-6, 2014



Muon-lonization lin
uon-lonization Cooling Neutrino Factory and Muon Collider
Muon lonization Cooling Experiment

MICE Beamline and Cooling Channel

Q = Quadrupole magnet TOF = Time of Flight
Target D = Dipole bending magnet KOV = Cherenkov detector
DS = Decay Solenoid LH quid Hidrogen

‘GVA = Scintillator counter ampling Calorimeter
BPM = Beam Profile Monitor EMR Electron-Muon Ranger

PbDf =Lead Diffuser

Q1-3 D2 Q4-6 BPM Q7-9 PbDF LH Diffuser RF Cavity EMR
| |
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@ MICE is designed to produce a 10% cooling effect on the muon beam
@ measurement of muon cooling effect to ~1% precision

@ different detector technologies are employed

@ 100-400 MeV/c e+ ,u* T beams are used

terdam, June 2
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MICE Beamline Instrumentation

Q = Quadrupole magnet TOF = Time of Flight
Target D =Dipole bending magnet g0 ‘herenkov detector
DS = Decay Solenoid LH quid Hidrogen

‘GVA = Scintillator counter ampling Calorimeter
BPM = Beam Profile Monitor EMR Electron-Muon Ranger

PbDf =Lead Diffuser
see next slide...

LH Diffuser RF Cavity (EMR)
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@ TOF - particle identification, trigger and timing

@ CKOV - muon/pion/electron separation at high momentum
@ Tracker - particle momentum measurement

@ KL - electron pre-shower

Ruslan Asfandiyarov ( terdam, June 2
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Electron-Muon Ranger (EMR)

Iplane- 59 bars Fiber boxes A Fully active scintillator

o tracker-calorimeter located at the very
end of the cooling channel. It stops
electrons / muons / pions with
momentum below 150 / 300 /
350 MeV/c, records muon/pion decays
and give very distinct particle
identification signatures.

@ 1 m3 of active volume

@ 48 planes made of 59 triangular
scintillator bars with glued 1.2 mm
wavelength shifting fibers

@ light is collected by single-anode

= - 2l )y PMT on one side of a plane and
w s 2 by 64-channel PMTs - on the

other: 3120 channels in total

64-channel PMTs Single-channel PMTs

@ the granularity of the detector allows for the individual track reconstruction
@ muons/pion decay products can be reconstructed as well
@ the detector help to reach high precision of the emittance measurements
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Overall Detector Design

@ 48 intersecting planes form 24 modules which allow for measurement of X-Y
coordinate of a track, Z coordinate is given by a plane position

@ readout electronics is housed inside the support frame and located next to the
PMTs to minimize analog signal distortions, digital signals from 64-ch. PMTs and
analog signal from 1-ch. PMTs are sent from the front-end boards outside the
detector enclosure
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Scintillator Bars

@ scintillator bars have been produced at extrusion facility at Fermilab (also
produced scintillators of different shapes for large scale experiments MINOS,
Minerva, T2K-ND280 etc.)

/.,

@ made of polystyrene pellets (Dow Styron 663 W) as base and 1%
PPO(scintillator, 2,5-diphenyloxazole, C15H11NO) as primary and 0.03%
POPOP(wavelength shifter, 1,4-di-(5-phenyl-2-oxazolyl)-benzene, Co4H16N2O)
as secondary fluor

@ each bar is coated with TiO5 reflector in order to increase light collection by a

wavelength shifting fiber inserted and glued inside the scintillator

@ light output of the scintillator is around 17 photo-electrons (measured by PMT
with 25% quantum efficiency)
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Scintillator Bars, Fibers

Transmittance

Scintillator
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Emission
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/

850 700 0 500 550 500
Wavelength, nm

@ the scintillator bars are 110 cm long, 1.7 cm high and 3.3 cm wide with 3 mm
hole along a bar for a wavelength shifting (WLS) fibers

@ fluorescence spectrum of the scintillator matches to absorption spectrum of the
WLS fiber that re-emits green light to which PMTs are most sensitive

@ WLS fiber characteristics:

made by Saint-Gobain Crystals

double cladding: 1.2 mm

core material: polystyrene with acrylic cladding
numerical aperture: 0.58

trapping efficiency: 3.5%.

niversity of Geneva), EMR sterdam, June 2
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Scintillator Bars, Fibers, PMT Connectors

@ each bar is equipped with two custom-made connectors to which clear fibers
(1.5mm multi-cladding light guide produced by Kuraray) are coupled

@ each fiber end is polished with the help of special polishing machine with 4
different diamond-based polishing papers (last one is 1um grade)

@ abundler of 60 clear fibers glued into PMT connectors of two types: one for
64-ch. PMT, another for 1-ch. PMT; and polished

Ruslan Asfandiyaro iversity of Geneva), EMR TIPP2014, Amsterdam, June 2-6, 2014



Detector Components
Electron-Muon Ranger Construction
Electronics and Data Acquisition

Table of Contents

e Electron-Muon Ranger

@ Construction

sfandiyarov (University of Geneva), EMR



Detector Components
Electron-Muon Ranger Construction
Electronics and Data Acquisition

Plane Assembly

@ numerous quality tests have been implemented in order to insure that all the bars
and fibers are of good quality

@ all electronics components (front-end boards, PMTs, cables) were tested
individually before final assembly

@ construction was split into several steps:
gluing bars with WLS fibers (+ optical quality test, dedicated test bench)
4 gluing clear fiber bundles
B polishing fiber connectors (+ optical quality test, dedicated test bench)

§ assembling planes (+ optical quality test, dedicated test bench)
assembling front-end electronics

@ as aresult: no dead channels on bar/fiber/connectors level
@ 3 (out of 3120) dead channel on electronics level

niversity of Geneva), EMR sterdam, June 2
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Front-End Electronics

n o Q

@ cooling fans are place in front of the boards in insure efficient air exchange

niversity of Geneva), EMR sterdam, June 2
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PMT Calibration System

@ LED calibration system is setup inside the detector enclosure
@ LED driver box connected to 100 fibers going to each PMT
[ il ¥ " ;.-

— A
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Fully Assembled Detector

@ cabling,

control rack, detector light-tight enclosure:

o ¥ S
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Detector Installation in MICE Hall

@ the detector was positioned at the end of MICE beamline (September 2013):
. i b T
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EMR Front-End Boards

Voltage Divider Flex Cable Digitizer-Buffer Board (DBB)

__

High Voltage Cable 64-ch. PMT Front-End Board (FEB)
The Front-End Board (FEB) is designed to readout the The Digitizer-Buffer Board (DBB) receives signals from
64-ch. PMT. It hosts a MAROC ASIC that amplifies, FEB and stores them in buffer memory. MICE beam is
discriminates and shapes all input signals. Pulse height made of 1ms spills every second. Every spill is composed
information can be extracted at low rate (during calibration of hundreds of particles. All interactions of these particles
with cosmics). Time over threshold information is directed are stored in DBB and transferred to PC at the end of a
to a piggy-back buffer board. spill.

Ruslan Asfandiyarov ( terdam, June 2
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EMR DAQ Hardware and Software

C++ Data Analysis e E‘?‘;‘,’"s:;"‘
i Data Cla of the Binary Data
Reconstruction, Calibration etc. ata Classe
Binary
Data
. \
Equipment Management CH Readout
DAQ Communication Functions | of the Binary Data

Binary ] Binary [
| pam | Data’

Ci++ functions to access the VME bus

‘ CAEN VME Linux Dynamic Library ‘

7| Binary |
| paw

Driver
PCI interface card
CAEN A2818
Software

‘ PCI Bus

PCI Interface Card
CAEN A2818

7| comer
__|optical Link|

Hardware

VME Controller
CAEN V2718

The detector front-end electronics is
controlled via VME readout boards and
based on CAEN VME interface. Binary data
is saved into dedicated C++ data structure:

- 2
3 = 3 3 3 3

EErm
B <

RunCondtions
Ep—
P

The EMR can work either as a standalone
detector (cosmis, calibration) or as a part of
the MICE (beam data taking). The EMR
DAQ software allow for both operational
modes with no modifications to the codes
when switching from one to another. When
operated within MICE, the readout code is
enabled inside the MICE DAQ software,
while in the standalone mode the rest of the
experiment is disabled.

TIPP2014, Amsterdam, June 2
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Geant4 Simulation: Typical Event Display
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Geant4 Simulation: Negative Particles Event Displays

1 event 10 events 10 events
X-Z proiection  X-Z proiection X-Y proiection

muons electrons

pions
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Geant4 Simulation: Positive Particles Event Displays

1 event 10 events 10 events
X-Z projection X-Z projection X-Y projection

muons positrons

pions
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Geant4 Simulation: Muo

@ muons/pions with momentum below 300/350 MeV/s stop in the detector

@ Bragg peaks are clearly visible where muons/pions stop

@ no difference between positive and negative electrons/muons

@ significant difference between positive end negative pions due to nuclear capture
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Geant4 Simulation: Muon/Pion Nuclear Capture

e—
negative
pions
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Geant4 Simulation: Shower Shapes

log scale normal scale
negative positive negative positive
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Monte Carlo Digitization Validation

Simulation
Cosmics
Beam

4 GeV muons from simulation VS cosmics muons

Raw Simulation
4 GeV muon

Digitized Simulation
4 GeV muon
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High Energy Cosmic Rays
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High Energy Cosmic Rays
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@ during one month the detector was exposed to the MICE beam

@ the beam was composed of e, u, m with momenta from 250 to 550 MeV/c
@ spill period is 1 sec. and there are from 1 to 8 particles per spill

@ particle type and momentum is identified by TOF detectors

(*] for§1ch particle the following is measured in the EMR:

range of primary (muon/pion) and secondary (electron) tracks
total charge

Asfandiyarov (University of Geneva), EMR sterdam, June 2
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MICE beam particles: electron
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MICE beam particles: electron
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MICE beam particles: muon/pion decay
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Range of Primary Particles: Scatter Plots
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Range of Secondary Particles: Scatter Plots

Muons
@ 100prT T T T T T T T T T i)
5 9 5
8 80 8
& 60 : &
50
40 f
30f i
205y | |
10t Sk ool P :
P 1 e U ) (1L | i o
160 180 200 220 240 260 280 300 320 340 160 180 200 220 240 260 280 300 320 340

Momentum, MeV/c Momentum, MeV/c

Ruslan Asfandiyaro iversity of Geneva), EMR TIPP2014, Amsterdam, June 2-6, 2014



Detector Performance

Simulation
Cosmics
Beam

Total Reconstructed Charge

2
=]
=}
=3
2
-
<

Arbitrary Units

T T T
170 MeV/c
muons

pions
electrons

2000 4000 6000 8000 100001200014000160001800020000

Total Charge, ADC counts

Rusla

250 MeV/c

sl b by b 1]

2000 4000 6000 8000 100001200014000160001800020000
Total Charge, ADC counts

Asfandiyarov (

Arbitrary Units

Arbitrary Units

T
210 MeV/c

o
=) <
=)
LA L i e

0,

Total Charge, ADC counts

290 MeV/c

PPY EPP FYYRY FYTTY PRTTY PRTEITOTI FYOTA PR I

Ll C bl i il
2000 4000 6000 8000 100001200014000160001800020000

ok
0 2000 4000 6000 8000 1000012000140001600018000200
Total Charge, ADC counts

sterdam, June

00



Simulation
Cosmics
Detector Performance Beam

Total Reconstructed Charge: Scatter Plots
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Summary

Summary

@ The EMR project was initiated in 2008. Only in 2010 after
major revision and overhaul the actual construction began
and after four years it was completed and successfully
commissioned in MICE.

@ Beam tests revealed an exceptional behavior of the
detector.

@ It will be used as part of the MICE beam instrumentation
and provide valuable data that will allow for the precise
measurement of physical quantities required to prove the
possibility of the muon ionization cooling.

Ruslan Asfandiyarov (University of Geneva), EMR TIPP2014, Amsterdam, June 2-6, 2014



Thank you for your attention!
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