

Development of CMOS Pixel Sensor Featuring Pixel-Level Discrimination for the ALICE-ITS Upgrade

<u>T. Wang</u>, H. Pham, A. Dorokhov, M. Goffe, I. Valin, A. Himmi, F. Morel, C. Hu-Guo, Y. Hu and M. Winter (on behalf of the PICSEL group of IPHC-Strasbourg)

Outline

> CMOS pixel sensor: from the STAR-PXL to the ALICE-ITS upgrade

- > The R&D road map towards the ASTRAL sensor
 - **AROM-0:** *feasibility study*
 - **AROM-1**: further optimization
 - **G** FSBB-A0: first prototype of full scale building block for ASTRAL
- Summary and conclusions

From STAR-PXL to ALICE-ITS upgrade

ULTIMATE (MIMOSA 28) for the STAR-PXL detector

- > Fabricated in 0.35µm CMOS process
- Active area as large as ~ 3.8cm² (with 20.7μm square pixels)
- Rolling shutter readout analogue pixels + <u>column level discriminators</u> + zero suppressed output
- t_{int} ~ 200µs & power dissipation ~ 150mW/cm²
- The STAR-PXL detector is taking physics data since early March 2014
- The first vertex detector equipped with CMOS pixel sensor (CPS)

ALICE-ITS upgrade has called for more demanding sensor performances

Expt-System	σ_{t}	$\sigma_{\sf sp}$	TID	Fluence	T _{op}
STAR-PXL	≤ 200µs	~5µm	150kRad	3⋅10¹²n _{eq} /cm²	30°C
ALICE-ITS	10~30µs	~5µm	700kRad	10 ¹³ n _{eq} /cm ²	30°C

=> Moving to the TowerJazz 0,18µm CIS quadruple well process

- Radiation tolerance
 - High resistivity sensitive volume
 - Thinner gate oxide
 - Validated for ALICE-ITS upgrade

✓ Speed

- More parallelized readout (multiple-row readout)
- Elongated pixels (less rows to be readout)
- Finding new pixel structures
 - => High μ-circuits integration
 - => Deep-Pwell: full CMOS integration in pixel

IPHC tianyang.wang@iphc.cnrs.fr

ULTIMATE

From STAR-PXL to ALICE-ITS upgrade

- AROM (Accelerated Read-Out Mimosa) sensor with pixel-level discrimination
 - Analogue buffer driving the long distance column line is no longer needed
 - Static current consumption reduced from ~120 μA (in column-level discrimination) to ~14 μA per pixel
 - > A-D conversion time can be halved down to 100ns due to small local parasitic
- R&D roadmap based on the AROM sensor for the ALICE-ITS upgrade
 - Our final goal: ASTRAL (<u>A</u>ROM <u>Sensor</u> for the inner <u>TR</u>acker of <u>AL</u>ICE)
 - > One of the proposals for this application

Description of AROM-0 (1/2)

Chip overview

- 6 sub-matrices
- Pixel pitch: $22x33 \ \mu m^2 =$ driven by the requirement of the ALICE-ITS upgrade
- Each pixel contains a sensing diode, a pre-amplifier and a discriminator
- Validated sensing and pre-amplifying components (MIMOSA 32, MIMOSA 32TER)
- Three different topologies of discriminators
- Both single row (matrix of 32×32) and double row readout (matrix of 16×16) are implemented
- 4 extra columns alongside the 32×32 matrices for analogue calibration (C-V conversion factor)
- Compared to the column level discrimination
 - Twice as fast
 - Less than half of the pixel static current consumption

Description of AROM-0 (2/2)

Test Results of AROM-0

■ Analogue calibration: Fe⁵⁵ X-ray source

> CVF: \sim 55 μ V/e⁻ => Correspond well to previous measurements with analog output pixels

Full in-pixel circuitry test

Sub-array	Temporal noise (mV)	FPN (mV)	ENC (e⁻)
V1	1.43	0.66	30.2
V2	1.55	0.49	28.4
V2 (double row)	1.57	0.72	30,4

- Total ENC ~30e⁻ @ 100ns/row or 100ns/2rows
- The discriminator contributes ~ 20e⁻
 - Noise sources have been studied and noise performance can be improved
- Results are encouraging but further optimization is still needed => guiding the design of AROM-1

From AROM-0 to AROM-1

Test Results of AROM-1 B (1/2)

In-pixel discriminator test

- TN ~ 0,75mV, FPN ~ 0,63mV @ 100MHz clock (instead of 160MHz)
 - Readout speed: 160ns/2rows
 - Current acquisition board limitation
- > Noise improved by ~ 20% compared with AROM-0 V2 (double row readout)
- > Results are likely to allow for satisfactory signal-to-noise ratio (SNR)
 - It seems to be very difficult to further improve the noise performance in this circuit configuration

Test Results of AROM-1 B (2/2)

Full in-pixel circuitry test results

- TN ~ 1,1mV, FPN ~ 0,66mV @ 100MHz clock
- > Conversion factor before discriminator: $55\mu V/e^- \sim 70\mu V/e^-$
- > The discriminator still contributes larger noise than the sensing and pre-amplifying components
 - The dimension of the input transistor in the pre-amplifier is increased in AROM-1
 => RTS noise mitigation BUT lower CVF
 - It would be beneficial if a higher C-V conversion gain is achieved

Test Results of AROM-1 E

Full in-pixel circuitry test results (preliminary results, test still in progress)

- TN ~ 0,94mV, FPN ~ 0,23mV @ 100MHz clock
- > Discriminator noise: TN ~ 0,29mV, FPN ~ 0,19mV @ 100MHz clock
 - TN and FPN largely decreased compared with AROM-1 B
 - very promising (also as expected)
- > The power consumption is also optimized => static current consumption ~ 15µA/pixel
- Baseline pixel for FSBB_A development

FSBB-A0 Overview

Main characteristics

- > pixels of 22×33 μ m² with staggered sensing diodes => AROM-1 E
- > Double-row rolling shutter readout
- > 416 columns of 416 rows
- > 13.7×9.2 mm² active area
- New zero-suppression logic=> SUZE-02
- > 4 output buffers of 512×32 bits each
- > 2 output nodes at 320 Mbits/s (160 MHz clock)
- > Integrated JTAG, regulators, ...
- t_{r.o.} ~ 20 μs

IPHC tianyang.wang@iphc.cnrs.fr

Summaries and Conclusions

- The CMOS pixel sensor is under a transition of upgrading from the 0.35µm technology to the 0.18µm technology in order to meet the requirements of the ALICE-ITS upgrade
 - Radiation tolerance validated
 - New pixel architecture is explored => pixel level discrimination (fast & power efficient)
- AROM-0: feasibility study
 - Two different topologies of discriminator with promising performance
 - Some coupling issues found and high temporal noise => optimized in the AROM-1
- AROM-1: pixel optimization and upstream architecture verification
 - Including 5 different chip versions (AROM-1 A/B/C/E/F)
 - The best pixel is AROM-1 E derived from AROM-0 V1
 - Preliminary results have shown excellent noise performance
 - Power consumption also optimized => pixel static current consumption <15 μA</p>
- **FSBB_A0:** verify the full chain and full functionalities of the ASTRAL sensor
 - Utilizing similar pixel as in AROM-1 E
 - To be tested this summer
- The final sensor called ASTRAL will combine 3 FSBB_As

THANK YOU!