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3D INTEGRATION OF IMAGERS
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IMEC’S IMAGER INTEGRATION ROADMAP
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FRONTSIDE ILLUMINATED 
IMAGERS (FSI)
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MONOLITHIC FRONT SIDE ILLUMINATED 

IMAGERS + EXTRA MODULES

• Imec solution: CMOS 

based imager technology:

- 0.13 um CMOS platform

- + CIS (CMOS imager sensor) 

module: 4T pixel

- + high end add-on’s and custom 

process development:

 Backside illumination

 Embedded CCD

 Hyperspectral filters
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PIXEL DESIGN
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SPECIAL SUBSTRATES

 Epitaxial layers:

• Thick:

- Up to 50 um demonstrated

- For enhanced red response

• Graded dopant concentration

- For directional carrier transport

= lower cross-talk

 High resistivity substrates:

• Both n and p-type

• Resistivity > 1kOhm.cm

• Solution for chucking in imec

fab

 Application: fully depleted 

imagers for particles and X-ray 

(direct detection)
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▸ Imec 130nm 

CMOS

▸ 4kx2k pixels

▸ 2.5μm pitch

▸ 60fps

▸ 12bit ΔΣ column 

ADCs

▸ <1.5W

▸ LVDS digital 

interface

PROTOTYPE OF 4K X 2K CIS

Designed & manufactured by imec for 
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 DARE: Radiation-hardened-by-

design libraries in standard 

commercial CMOS technology:

• Developed & enhanced in ESA projects

• Library of mixed signal & digital design 

blocks:

- DARE180 well supported (UMC 0.18 um 

CMOS)

- XFAB .18 XH started 

- Planned creation of a TSMC 65nm

DARE library

RADIATION HARD DESIGN @ IMEC

Design

Against

Radiation

Effects
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IMEC ICLINK OFFERING

11

ICLink

Aerospace services

PCB/PBA Services

Backend 

Design 

Services

ASIC design

with eco system 

partners

Technology

Targeting

Service

TSMC

VCA Partner



© IMEC 2014

EMBEDDED CCD IN CMOS TECHNOLOGY

 Extra module added into Imec 130nm 

CMOS/CIS technology

 Narrow gap, single poly electrodes

 Customizable, BSI compatible CCD 

device

 Fully CMOS-CIS compatible 
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EMBBEDDED CCD TDI TEST IMAGER

 eCCD technology validated, devices processed

 excellent charge transfer efficiency (CTE) measured: > 99.9987 %
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ULTRA FAST IMAGING

USING ECCD

 design solution:
• in pixel memories

• = store a (limited) number of 

frames inside pixel

• readout at lower speed

• allows burst mode of imaging

 embedded CCD:

• noiseless storage and transfer

 CMOS:

• fast & low power data transfer     

off-chip, ADC’s, ...

analog 

memory 

chain

Source: G. Etoh

time

readout

image & 

store



© IMEC 2014

HYPERSPECTRAL IMAGING PRINCIPLE

Spectrometer

x
y

λ

Color camera

x y

λ

Hyperspectral 

camera

 Spectral information

in one spatial pixel only

 RGB colors of one 

image only
 Image-cube: both spectral 

and 2D information
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HYPERSPECTRAL IMAGERS: PRINCIPLE

 State-of-the-art: 

• Imager + grating/prism

Advantage: 
▸ Extreme miniaturization

 Imec solution:

• Wafer level filter integration
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HYPERSPECTRAL

IMAGERS: STATUS

 technology established for 

600 -900 nm

 technology development 

ongoing:

• 470 – 900 nm

• combination with panchromatic

 post-processed on top of 

CMOSIS’s CMV2000 & 

CMV4000 sensors

 6 different camera 

implementations

 evaluation kits available

PIET DE MOOR 17
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BACKSIDE ILLUMINATED 
IMAGERS (BSI)
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ADVANCED IMAGER INTEGRATION
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BACKSIDE VS. FRONTSIDE ILLUMINATION

epi Si

bulk Si

diode

Front side illuminated

 Front side illumination:

• Absorption in BEOL dielectrics

Backside illuminated

 Backside illumination :

• Direct absorption in Si

 imec provides backside illuminated imager platform 

including very shallow surface passivation
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TECHNOLOGY ENABLER:

THINNING

Technology:

• Course + fine grinding

• Critical: thinning damage, impact 

on devices

Wafer handling:

• Very thin wafers (< 100 um): use 

of carrier wafers wafer bonding 

technology

 IMEC results:

• Thinning down to a few um

• Total thickness variation < 1 um 

on 200 mm wafer

24
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THINNING PROCESS

 Progressive bulk thinning approach:

• Grinding + Selective and Non-selective wet etch final thickness 

with < 1um TTV (on 200 mm wafer)

 important parameters:

• Final thickness: determines the QE in the (infra)red

• Thickness uniformity: total thickness variation (TTV)

PIET DE MOOR 25

After grinding

After wet etch
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IMEC BACKSIDE ILLUMINATION 

MODULE • Extension of 0.13 micron 

CMOS/CIS process

• Process module including:

- Wafer-to-wafer bonding

- (bulk) Wafer thinning

- Backside passivation

- Anti-reflection coating

- Bondpad opening

Imaging area

CIS CMOS

W2W 

Bonding

Thinning

&

Passivation

Bondpad

opening
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DIRECT LOW TEMPERATURE OXIDE-

OXIDE BONDING

 successful optimization of process

 important parameters:

• topology

• flatness

• micro-roughness

• surface particles 

• controlled surface chemistry

oxide
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BACKSIDE SURFACE PASSIVATION:
PROBLEM AND SOLUTION

 Problem:

• Backside interface is low quality: high trap density, potential 

pockets

• Impact on imager performance:

- Reduced quantum efficiency (esp. blue/green)

- Increased dark current

 Solution: backside surface field:

• Backside ion-implant and laser annealing

PIET DE MOOR 28
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BACKSIDE ILLUMINATION RESULTS: 
VISIBLE

 including ARC

 QEmax ~ 90 %, QE > 70% in visible 
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BACKSIDE ILLUMINATED IMAGERS:

WAVELENGTH EXTENSION

 near infrared

(and soft X-ray):

• deep absorption of photons 

 thicker epi material

PIET DE MOOR 30

 ultraviolet:

• very shallow absorption of 

photons  very thin 

backside passivation
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BACKSIDE ILLUMINATION RESULTS:

NEAR ULTRAVIOLET

 optimized backside passivation and ARC

 QE > 60% from 270 nm - 700 nm 
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EUROCIS: large area imager for space

 2k x 2k, 14 um pixels stitched imager

 8 different flavors of rad hard pixels

32
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HYBRID (BACKSIDE ILLUMINATED) 
IMAGERS (HBI)
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ADVANCED IMAGER INTEGRATION
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HYBRID IMAGERS:
APPROACH

 2 layers:

• Detection layer + optional 

(analog) read-out

• 2nd read-out layer

 integration options:

• Front side illuminated::

- through Si vias (TSVs)

+ microbumps required

• Backside illuminated: 

- Backside thinning 

+ microbumps required

PIET DE MOOR 35
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DRIVERS (I):

NON-SI IMAGERS

 extension of wavelength range (towards IR) requires 

non-Si detection layer

 1D imagers can be wire bonded

 2D imagers require pixel wise interconnect to Si 

ROIC = hybrid imager

 standard technology for (near-)IR imagers:

• InGaAs, HgCdTe, ...

 disadvantages: bump process and flip-chip integration:

• Cost

• Scaling to small pixel size (< 10 um) difficult

PIET DE MOOR 36



© IMEC 2014

TECHNOLOGY ENABLER:
HIGH DENSITY BUMPING

 In  CuSn microbumps:

• Post-process at wafer level for both sides:

- Under-bump metallization (UBM) & 

patterning

- Solder deposition & patterning

• Smallest pitch:

- 20 um, 10 um under development

 Flip-chip D2D or wafer bonding

 (optional) underfil

PIET DE MOOR 37
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 applications:
• consumer imager packaging

• large area X-ray

DRIVERS (II):
LARGE AREA/SMALL FOOTPRINT

PIET DE MOOR 38
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PACKAGING OF IMAGERS

Advanced packaging technology at bond pad level:

• Traditional lateral wire bonding TSV (Through Si Vias ) per bond pad + 

redistribution layer + bump ball bonding

Advantages:

• Smaller footprint

• Reduced capacitance               faster/low power interconnect

Applications:

• Consumer imager packaging

• Endoscopes

PIET DE MOOR 39
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SOLUTIONS FOR LARGE AREA 

IMAGERS
 stitching: yield problem, area limit

 2-side/3-side buttable/tiling: area limit

 solution = 4-side buttable

using 3D integration

• minimal non-sensitive area thanks to vertical 

interconnection

PIET DE MOOR 40
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TECHNOLOGY ENABLER:
STITCHING

 Stitching allows large area imagers:

• Up to 1 imager per wafer

 Different imager sizes on one wafer demonstrated:

• 12x12 mm2, 25x25 mm2 and 50x50 mm2

Application: e.g. X-ray
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TECHNOLOGY ENABLER:
EDGELESS DETECTORS

 Problem of 4-side butting/tiling: dead 

area between modules:

• Spacing

• Bad pixels at edge

 Solution: edgeless imagers = Advanced 

singulation close to active pixels:

• Dicing by grinding, stealth dicing

• Side wall passivation

(bad) 
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pixel
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pixel
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pixel
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h pixelpixel pixel

passivation

tr
e
n

c
h pixelpixel
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TSV AT BONDPAD LEVEL

 via-last approach:

• 1) process CMOS device

• 2) thin wafer

• 3) through Si via process

 disadvantage:

• handling of thin wafer using 

temporary wafer bonding

PIET DE MOOR 43
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BACKSIDE REDISTRIBUTION AND BUMPING

 wafer-level-packaging 
technology:
• Cu electroplating and dielectrics 

(BCB, ...)

• linewidth: > 5 um lines/space

• Solder balls

PIET DE MOOR 44
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DRIVERS (III) : FAST/SMART SILICON BASED

IMAGERS

 2 active CMOS layers vertically interconnected: 

• Top layer backside illuminated imager + part of imager 

readout

• Bottom layer: additional readout electronics

 Different architectures:

• Peripheral vertical interconnects

• Area distributed vertical interconnects
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HYBRID IMAGERS IMPLEMENTED BY 

SONY

 2-layer imager:

• top layer: BSI sense layer

• bottom layer: readout/image 

processing

 vertical interconnect:

• only in peripheral electronics

• using (large) Through Si vias

 advantages (according to 

Sony):

• Separate technology use

• Area reduction

PIET DE MOOR 46
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AREA INTERCONNECTED 3D STACKED 

IMAGERS

 3D integration using high density vertical interconnects 

enables:

• massive parallel vertical readout of pixel array = high speed

• integration of electronics & memory per pixel = smart imagers

PIET DE MOOR
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BENCHMARKING HYBRID VS. MONOLITHIC

49

I/O speed 

limitation

noise 

limitation

ADC 

area 

limitation

Standard monolithic

Sub-column addressing 

+ ADC per sub-column

Conclusions:  enables high speed imaging

KU Leuven Confidential



© IMEC 2014

HYBRID BSI TECHNOLOGY APPROACH

Top and bottom die made in (e.g. imec 0.13 um) CMOS

Wafer to wafer bonding:

• Mechanical + electrical connection

 Backside illumination module:

• Backside thinning + passivation

• Bondpad opening

Wirebond connection of bottom die using W2W 

electrical interconnect to top die
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HYBRID BSI FLOW

PIET DE MOOR 51
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TECHNOLGY ENABLER:
HYBRID W2W BONDING

 wafer to wafer oxide-oxide + Cu/Cu permanent 

bonding:  critical process

 in-situ alignment with few micron accuracy

 allows high density interconnects: < 10 um pitch

 development ongoing

oxide

oxide

oxide

oxide

oxide

oxide

oxide

oxide
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3D STACKED IMAGERS
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ADVANCED IMAGER INTEGRATION
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3D STACKED IMAGERS

 Concept:

• Stacking of multiple (>2) layers: detection layer + ROIC layers

- Example:  photodetector layer + analog ROIC + digital image processor

• Using high density bumping + area redistributed TSVs

Advantages:

• General: optimization of (CMOS) technology for different layers

• Imager system:

- Vertical parallel readout chain allows high speed

- Triple (n-fold) area per pixel allows complex electronics per pixel

- Low capacitance interconnect to digital image processor allows high speed and 

low power 

 Challenge: system architecture:

• Optimal split in different layers of functionality and technology 

PIET DE MOOR 55
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3D STACKED IMAGERS:

APPLICATIONS

 non-imagers:

• memory stacking

• memory

 imagers:

• image processing:

- detection and 

recognition of faces, 

roads, cars, ...

- depth information 

(3D)

• image compression

PIET DE MOOR 56

Multi-die Memory stack  Memory on logic
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3D STACKED IMAGERS:

PARALLEL IMAGE PROCESSING

 area distributed vertical 

architecture allows parallel 

processing of image 

PIET DE MOOR 57
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TECHNOLOGY ENABLERS: 

THROUGH-SI-VIA PROCESS

 "Via-middle": fabrication TSV’s after CMOS FEOL 

device fabrication processing but before BEOL 

interconnect

Si

Si imec process: 

o 5 µm diameter;

o 50 µm deep;

o Aspect ratio 10
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TECHNOLOGY  ENABLERS: 
ASSEMBLY 

 6 layer stack demonstrated

PIET DE MOOR 59
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TECHNOLOGY:  TSV IN INTERPOSER 

Mx (M3)

My (M4)

Mcp (M5)

Si Interposer

PWR (M2)

GND (M1)

MIM

µbump connections: 

Pitch 40 µm scaling down 

to 20 and 10 µm

TSV

Cu-pillar flip chip bumps: 

50µm Ø,  50 µm tall, 

down to 100 µm pitch

Backside passivation & 

(optional) semi-additive 

Cu redistribution layer 

(RDL)  

TSV 

10 µm Ø, 100 

µm deep

TSVs in (passive) 

interposer 

substrate

 advantage: 

standalone 

fabrication

3D SYSTEM INTEGRATION PROGRAM 60
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IMEC 3D SYSTEM INTEGRATION PROGRAM

3D 

PROGRAM

Lam
RESEARCH

FOUNDRIES

OSAT

MEMORY IDM

EDA

FABLESS

EQUIPMENT SUPPLIERS

LOGIC IDM

MATERIAL SUPPLIERS

TECHNOLOGY

SUPPLIER
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CONCLUSIONS

 there is a future for 3D stacked imaging systems

 application specifications define the required 3D 

integration technology

 trade-off: performance vs. cost

 technology blocks are becoming mature (with delay):

• wafer thinning 

• high density D2D and W2W vertical interconnect technology 

• TSV technology

 technology access remains difficult:

• (large volume) consumer products first by vertically integrated 

companies

• no commercial access (yet) for (ultra) low volume

• research institutes are moving to prototyping and LVM
62
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Industrial sorting &

Machine Vision

High-end
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Hard
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HIGH-END IMAGERS:
APPLICATIONS & FEATURES
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HYPER
SPECTRAL
VISION SYSTEM

Line scan imager

Snapshot

imager

Evaluation 

System

Backside

illumination 
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LOW NOISE
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IMAGE SENSORS

embedded CCD 
(in CMOS)
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-vision

X-Ray
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IMAGE SENSORS

ultra-sound 
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UV / EUV 
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Electron
detectors

ORGANIC
IMAGE SENSORS

Lense-free

microscopy 
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Displays
(MEMS based)HOLO

GRAPHIC 
VIDEO

VISION SYSTEM

Cell sorter

IMEC IMAGERS & VISION SYSTEMS
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IMEC OFFERING:

Advanced vision systems solutions

 Innovation at technology, design and system level

 From R&D to Low Volume Production

Research & 

Development

Prototyping Low Volume 

Production
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