

3D INTEGRATION OF IMAGERS

PIET DE MOOR

IMEC'S IMAGER INTEGRATION ROADMAP

Integration complexity

imec

© IMEC 2014

FRONTSIDE ILLUMINATED IMAGERS (FSI)

MONOLITHIC FRONT SIDE ILLUMINATED IMAGERS + EXTRA MODULES

- Imec solution: CMOS based imager technology:
 - 0.13 um CMOS platform
 - + CIS (CMOS imager sensor)
 module: 4T pixel
 - + high end add-on's and custom process development:
 - Backside illumination
 - Embedded CCD
 - Hyperspectral filters

PIXEL DESIGN

4 Transistor pixel with pinned photodiode:

- √ low noise
- √ low dark current
- ✓ correlated double sampling compatible
- √ shared floating diffusion node

Key technology:

- ✓ custom design and process for:
 - photodiode
 - transfer gate
 - reset and source follower transistors

SPECIAL SUBSTRATES

Epitaxial layers:

- Thick:
 - Up to 50 um demonstrated
 - For enhanced red response
- Graded dopant concentration
 - For directional carrier transport
 - = lower cross-talk
- High resistivity substrates:
 - Both n and p-type
 - Resistivity > IkOhm.cm
 - Solution for chucking in imec fab
- Application: fully depleted imagers for particles and X-ray (direct detection)

IMAGER SOC CIRCUIT DESIGN

8-12b 4-250MS/s ADCs

- ADC typical specifications:
 - Low power consumption
 - High speed
 - Low noise/high resolution

PROTOTYPE OF 4K X 2K CIS

- Imec 130nm
 CMOS
- 4kx2k pixels
- ▶ 2.5µm pitch
- ► 60fps
- I2bit ΔΣ columnADCs
- ► <1.5W
- LVDS digital interface

Designed & manufactured by imec for Panasonic

RADIATION HARD DESIGN @ IMEC

- DARE: Radiation-hardened-bydesign libraries in standard commercial CMOS technology:
 - Developed & enhanced in ESA projects
- Library of mixed signal & digital design blocks:
 - DARE180 well supported (UMC 0.18 um CMOS)
 - XFAB .18 XH started
 - Planned creation of a TSMC 65nm
 DARE library

Design
Against
Radiation
Effects

IMEC ICLINK OFFERING

Backend
Design
Services

ASIC design with eco system partners

Technology
Targeting
Service

PCB/PBA Services

EMBEDDED CCD IN CMOSTECHNOLOGY

- Extra module added into Imec 130nm
 CMOS/CIS technology
- Narrow gap, single poly electrodes
- Customizable, BSI compatible CCD device
- Fully CMOS-CIS compatible

imec

© IMEC 2014

EMBBEDDED CCDTDITEST IMAGER

- eCCD technology validated, devices processed
- excellent charge transfer efficiency (CTE) measured: > 99.9987 %

ULTRA FAST IMAGING USING ECCD

design solution:

- in pixel memories
- = store a (limited) number of frames inside pixel
- readout at lower speed
- allows burst mode of imaging
- embedded CCD:
- noiseless storage and transfer
- CMOS:
- fast & low power data transfer off-chip, ADC's, ...

Source: G. Etoh

HYPERSPECTRAL IMAGING PRINCIPLE

Spectrometer

→ Spectral information in one spatial pixel only

Color camera

image only

Hyperspectral camera

→ Image-cube: both **spectral** and 2D information

HYPERSPECTRAL IMAGERS: PRINCIPLE

State-of-the-art:

Imager + grating/prism

Wafer level filter integration

Extreme miniaturization

HYPERSPECTRAL IMAGERS: STATUS

technology established for 600 -900 nm

technology development ongoing:

• 470 – 900 nm

combination with panchromatic

 post-processed on top of CMOSIS's CMV2000 & CMV4000 sensors

6 different camera implementations

evaluation kits available

BACKSIDE ILLUMINATED IMAGERS (BSI)

ADVANCED IMAGER INTEGRATION

imec

© IMEC 2014

BACKSIDE VS. FRONTSIDE ILLUMINATION

- Front side illumination:
- Backside illumination :
- Absorption in BEOL dielectrics
- Direct absorption in Si

Front side illuminated

Backside illuminated

 imec provides backside illuminated imager platform including very shallow surface passivation

TECHNOLOGY ENABLER: THINNING

Technology:

- Course + fine grinding
- Critical: thinning damage, impact on devices

Wafer handling:

 Very thin wafers (< 100 um): use of carrier wafers wafer bonding technology

• IMEC results:

- Thinning down to a few um
- Total thickness variation < I um on 200 mm wafer

THINNING PROCESS

- Progressive bulk thinning approach:
- Grinding + Selective and Non-selective wet etch final thickness with < Ium TTV (on 200 mm wafer)
- important parameters:
- Final thickness: determines the QE in the (infra)red
- Thickness uniformity: total thickness variation (TTV)

IMEC BACKSIDE ILLUMINATION MODULE

- Extension of 0.13 micron CMOS/CIS process
- Process module including:
 - Wafer-to-wafer bonding
 - (bulk) Wafer thinning
 - Backside passivation
 - Anti-reflection coating
 - Bondpad opening

DIRECT LOW TEMPERATURE OXIDE-OXIDE BONDING

- successful optimization of process
- important parameters:
 - topology
 - flatness
 - micro-roughness
- surface particles
- controlled surface chemistry

BACKSIDE SURFACE PASSIVATION: PROBLEM AND SOLUTION

- Problem:
- Backside interface is low quality: high trap density, potential pockets
- Impact on imager performance:
 - Reduced quantum efficiency (esp. blue/green)
 - Increased dark current
- Solution: backside surface field:
 - Backside ion-implant and laser annealing

BACKSIDE ILLUMINATION RESULTS: VISIBLE

- including ARC
- QE_{max} ~ 90 %, QE > 70% in visible

BACKSIDE ILLUMINATED IMAGERS: WAVELENGTH EXTENSION

- near infrared (and soft X-ray):
 - deep absorption of photons
 thicker epi material

- ultraviolet:
 - very shallow absorption of photons → very thin backside passivation

imec

© IMEC 2014

14 PIET DE MOOR

BACKSIDE ILLUMINATION RESULTS: NEAR ULTRAVIOLET

- optimized backside passivation and ARC
- QE > 60% from 270 nm 700 nm

EUROCIS: large area imager for space

HYBRID (BACKSIDE ILLUMINATED) IMAGERS (HBI)

ADVANCED IMAGER INTEGRATION

Integration complexity

imec

mager system performance

© IMEC 2014

HYBRID IMAGERS: APPROACH

- 2 layers:
 - Detection layer + optional (analog) read-out
- 2nd read-out layer
- integration options:
 - Front side illuminated::
 - through Si vias (TSVs) ____microbumps required __
 - Backside illuminated:
 - Backside thinning
 + microbumps required

DRIVERS (I): NON-SI IMAGERS

- extension of wavelength range (towards IR) requires non-Si detection layer
- ID imagers can be wire bonded
- 2D imagers require pixel wise interconnect to Si
 ROIC = hybrid imager
- standard technology for (near-)IR imagers:
- InGaAs, HgCdTe, ...
- disadvantages: bump process and flip-chip integration:
- Cost
- Scaling to small pixel size (< 10 um) difficult

TECHNOLOGY ENABLER: HIGH DENSITY BUMPING

- In → CuSn microbumps:
 - Post-process at wafer level for both sides:
 - Under-bump metallization (UBM) & patterning
 - Solder deposition & patterning
 - Smallest pitch:
 - 20 um, 10 um under development
- Flip-chip D2D or wafer bonding
- (optional) underfil

DRIVERS (II):

LARGE AREA/SMALL FOOTPRINT

- applications:
 - consumer imager packaging
 - large area X-ray

PACKAGING OF IMAGERS

- Advanced packaging technology at bond pad level:
 - Traditional lateral wire bonding → TSV (Through Si Vias) per bond pad + redistribution layer + bump ball bonding

- Advantages:
 - Smaller footprint
 - Reduced capacitance faster/low power interconnect
- Applications:
- Consumer imager packaging
- Endoscopes

SOLUTIONS FOR LARGE AREA IMAGERS

- stitching: yield problem, area limit
- 2-side/3-side buttable/tiling: area limit

- solution = 4-side buttable using 3D integration
 - minimal non-sensitive area thanks to vertical interconnection

imager

PCB board

PCB board

mager

TECHNOLOGY ENABLER: STITCHING

- Stitching allows large area imagers:
 - Up to I imager per wafer
- Different imager sizes on one wafer demonstrated:
 - 12x12 mm², 25x25 mm² and 50x50 mm²

Application: e.g. X-ray

TECHNOLOGY ENABLER: EDGELESS DETECTORS

- Problem of 4-side butting/tiling: dead area between modules:
- Spacing
- Bad pixels at edge
- Solution: edgeless imagers = Advanced singulation close to active pixels:
- Dicing by grinding, stealth dicing
- Side wall passivation

TSV AT BONDPAD LEVEL

- via-last approach:
- I) process CMOS device
- 2) thin wafer
- 3) through Si via process
- disadvantage:
 - handling of thin wafer using temporary wafer bonding

BACKSIDE REDISTRIBUTION AND BUMPING

- wafer-level-packaging technology:
- Cu electroplating and dielectrics (BCB, ...)
- linewidth: > 5 um lines/space
- Solder balls

DRIVERS (III): FAST/SMART SILICON BASED IMAGERS

- 2 active CMOS layers vertically interconnected:
 - Top layer backside illuminated imager + part of imager readout
 - Bottom layer: additional readout electronics
- Different architectures:
 - Peripheral vertical interconnects
- Area distributed vertical interconnects

HYBRID IMAGERS IMPLEMENTED BY SONY

- 2-layer imager:
- top layer: BSI sense layer
- bottom layer: readout/image processing
- vertical interconnect:
- only in peripheral electronics
- using (large) Through Si vias
- advantages (according to Sony):
- Separate technology use
- Area reduction

top layer

bottom layer

AREA INTERCONNECTED 3D STACKED IMAGERS

- 3D integration using high density vertical interconnects enables:
- massive parallel vertical readout of pixel array = high speed
- integration of electronics & memory per pixel = smart imagers

BENCHMARKING HYBRID VS. MONOLITHIC

HYBRID BSITECHNOLOGY APPROACH

- Top and bottom die made in (e.g. imec 0.13 um) CMOS
- Wafer to wafer bonding:
- Mechanical + electrical connection
- Backside illumination module:
- Backside thinning + passivation
- Bondpad opening
- Wirebond connection of bottom die using W2W electrical interconnect to top die

HYBRID BSI FLOW

TECHNOLGY ENABLER: HYBRID W2W BONDING

- wafer to wafer oxide-oxide + Cu/Cu permanent bonding: critical process
- in-situ alignment with few micron accuracy
- allows high density interconnects: < 10 um pitch</p>
- development ongoing

3D STACKED IMAGERS

ADVANCED IMAGER INTEGRATION

Integration complexity

imec

© IMEC 2014

3D STACKED IMAGERS

Concept:

- Stacking of multiple (>2) layers: detection layer + ROIC layers
 - Example: photodetector layer + analog ROIC + digital image processor
- Using high density bumping + area redistributed TSVs

Advantages:

- General: optimization of (CMOS) technology for different layers
- Imager system:
 - Vertical parallel readout chain allows high speed
 - Triple (n-fold) area per pixel allows complex electronics per pixel
 - Low capacitance interconnect to digital image processor allows high speed and low power
- Challenge: system architecture:
 - Optimal split in different layers of functionality and technology

3D STACKED IMAGERS: APPLICATIONS

- non-imagers:
 - memory stacking
 - memory

Memory on logic

imagers:

- image processing:
 - detection and recognition of faces, roads, cars, ...
 - depth information (3D)
- image compression

3D STACKED IMAGERS: PARALLEL IMAGE PROCESSING

 area distributed vertical architecture allows parallel processing of image

TECHNOLOGY ENABLERS: THROUGH-SI-VIA PROCESS

 "Via-middle": fabrication TSV's after CMOS FEOL device fabrication processing but before BEOL

TECHNOLOGY ENABLERS: ASSEMBLY

6 layer stack demonstrated

TECHNOLOGY: TSV IN INTERPOSER

- TSVs in (passive) interposer substrate
- advantage: standalone fabrication

IMEC 3D SYSTEM INTEGRATION PROGRAM

Logic IDM

SONY

MEMORY IDM

SK hynix

OSAT

FABLESS

TECHNOLOGY SUPPLIER

SYNOPSYS°

CONCLUSIONS

- there is a future for 3D stacked imaging systems
- application specifications define the required 3D integration technology
- trade-off: performance vs. cost
- technology blocks are becoming mature (with delay):
- wafer thinning
- high density D2D and W2W vertical interconnect technology
- TSV technology
- technology access remains difficult:
- (large volume) consumer products first by vertically integrated companies
- no commercial access (yet) for (ultra) low volume
- research institutes are moving to prototyping and LVM

imec

HIGH-END IMAGERS: APPLICATIONS & FEATURES

Industrial Industrial sorting & Instrumentation **Machine Vision** spectroscopy SM in Section Advanced detectors fluorescence imaging Night vision Life-Science detection Tissue analysis imec & Medical High dynamic High-end X-Ray radiology **Imaging** microscopy transports, endoscopy range earth observation tomography security & Spectral Showning to surveillance · pixels astronomy **Space, Physics**

Key features

Low noise

High QE

Low power

High speed

Radiation Hard

Non-Visible sensing

Spectral Filters/ARC

& Scientific

IMEC IMAGERS & VISION SYSTEMS

IMEC OFFERING:

Advanced vision systems solutions

Innovation at technology, design and system level

From R&D to Low Volume Production

