

CMS DAQ-2

The New CMS DAQ System for Run-2 of the LHC

Tipp '14 - Third International Conference on **Technology** and Instrumentation in Particle Physics

> an Vev<mark>e</mark>rka, Massachusetts Inst. of Tech., on behalf of the CMS DAQ group

> > 2nd June, 2014

Large Hadron Collider

Lake Geneva

- CMS • Largest and most complex • 27 km circumference
- 2 general purpose detectors
- 14 TeV design pp collision energ
 - 7 TeV in 2011, 8 TeV in 2012 Atlas

Higgs Discovery 4 July 2012 **CERN Main Auditorium**

5 GeV

SHUTDOWN: NO BEAM

bis status and SMP hags		
Link Status of Beam Permits	false	false
Global Beam Permit	false	false
Setup Beam	true	true
Beam Presence	false	false
Moveable Devices Allowed In	false	false
Stable Beams	false	false
	Link Status of Beam Permits Global Beam Permit Setup Beam Beam Presence Moveable Devices Allowed In Stable Beams	Dis status and some magsDisLink Status of Beam PermitsfalseGlobal Beam PermitfalseSetup BeamtrueBeam PresencefalseMoveable Devices Allowed InfalseStable Beamsfalse

Compact Muon Solenoid 2585 physiscists 790 engineers 690 undergraduates 281 technicians 182 institutes 42 countries

Run-2 Plans (2015-2018)

- 7-8 \rightarrow 13 TeV pp energy
- 50 \rightarrow 25 ns bunch spacing
- Up to 50 pileup
- Upgrading and adding several new CMS detector and on-line systems
 - Trigger Control and Distribution, Calorimeter Trigger (2014)
 - Hadron calorimeter readout electronics (2014/15)
 - Fully upgraded Level 1 Trigger (2016)
 - Pixel detector and readout electronics (2017)
- Event size $1 \rightarrow 2$ MB
- Support both *new* and legacy front-end drivers (μTCA and VME).

Bunch Spacing (ns)	Beam Current (10 ¹¹ e)	Emittance (µm)	Peak Lumi	Pileup
25	1.15	3.5	0.92	21
25	1.15	1.9	1.6	43
50	1.6	2.3	0.9-1.7	40-76
50	1.6	1.6	2.2	106

Why New DAQ?

- New requirements
- Ageing hardware
 - Most components at the end of life cycle
 - Run-1 NICs based on PCI-x
- New technologies
 - Myrinet widely used when DAQ-1 was designed
 - Ethernet and Infiniband dominate the Top-500 supercomputers

CMS DAQ-1 Overview

CMS DAQ-2 Overview

Frontend-Optical Link & Data Concentrator

Frontend-Optical Link & Data Concentrator

Simplified Unidirectional TCP/IP

Only need 3 states 🙂

10 Gb/s TCP/IP link from FPGA to PC

HW to PC: 9.7 Gb/s for fragments > 1 kB \bigcirc (receiving PC with 10 Gb/s NIC, performance tuned)

FRL/MyrinetFRL/FEROL 10 Gb/s EthernetSwitchover completed 2 weeks ago.15

Data Concentrator Performance

Performance meets requirements. ©

Data Concentrator Performance

Performance meets requirements.

Scales from a single concentrator to a fully loaded switch. ③

Data concentrator patch panels ... and switches

See Indrew Core Event Builder

Inputs and outputs mixed on leafs to better utilize leaf-to-spine connections

Infiniband CLOS network

File-based Filter Farm

- Goal: Fully factorize acquisition (XDAQ) and reconstruction (CMSSW) SW
 - Release cycle
 - Version of compiler and externals
 - Debugging
- Use files for the I/O (same as off-line)
- BU writes data to files on a RAM disk (256 GB/BU)
- 8-16 FUs mount it via NFS4 and run up to 2 SW processes per core reading the files.
- FU processes merge their outputs into a single file per FU and then write it back to a disk on the BU

RU-BU-FU Performance

DAQ-2 High Level Trigger Farm

	May 2011	May 2012	<i>Early 2015</i>
DAQ Version	DAQ-1	DAQ-1	DAQ-2
Model	Dell Power Edge c6100	Dell Power Edge c6220	To be decided
Form factor	4 motherboards in 2U box	4 motherboards in 2U box	
CPUs per mother-board	2 x 6-core Intel Xeon 5650 Westmere , 2.66 GHz, hyper-threading, 24 GB RAM	2 x 8-core Intel Xeon E5-2670 Sandy Bridge , 2.6 GHz, hyper-threading, 32 GB RAM	2 x 14-core Intel Haswell
# Motherboards	288	256	256
# Cores	3456	4096	7168
Data link	2 x 1Gb/s	2 x 1Gb/s	1 x 10 Gb/s

Total: ~ 15k cores on 800 motherboards (to be confirmed)

Merging and Storage

- File-Based Filer Farm produces output files
 - After merging on FU: 800 files x 10 streams scattered over 64 BUs every 23 seconds
 - To be merged to 1 file per stream in a central place
- Merging can be done by a file system
 - Just need to find a file system that can handle it
- Solution: Global File System (Lustre) on a Storage System
 - Merger process on BU reads data from all FUs in appliance
 - Data are written directly from the BUs to a single output file in the global file system

Merging and Storage

Single output file in the cluster file system

Test system performance (NetApp) with 14 clients, 4 Object storage servers, Lustre 2.4 (1/2 scale): 4.8 GB/s write ③

Summary

- CMS is installing a new DAQ system for Run-2 of the LHC
 - New optical SLINK-express readout link
 - 10 Gb/s TCP/IP from an FPGA
 - 10/40 Gb/s Ethernet data concentrator
 - 56 Gb/s FDR Infiniband core event builder
 - File-based high-level trigger (via 1/10/40 Gb/s Ethernet)
 - Cluster File System for storage
 - Throughput doubled to 200 GB/s
- Performance looks good. 🕲
- Installation is advancing well. 🕲
- Commissioning during the remainder of 2014.

References

- CHEP 2013, 20th International Conference on Computing in High Energy and Nuclear Physics 2013, Amsterdam, Netherlands, 14 18 Oct 2013
 - Andre Georg Holzner (UC San Diego) et al (CMS DAQ group), *The new CMS DAQ system for LHC operation after 2014 (DAQ2)*, 02 Nov 2013, CMS CR-2013/394, http://cds.cern.ch/record/1626828/
 - Petr Žejdl (CERN) et al (CMS DAQ group), 10Gbps TCP/IP streams from the FPGA for High Energy Physics, 08 Nov 2013, CMS CR-2013/402, <u>http://cds.cern.ch/record/1639563</u>
- RT 2014, 19th Real-Time Conference, 26-30 May 2014, Osaka University, Nara (Japan)
 - Andrea Petrucci (CERN) et al (CMS DAQ group), *Achieving High Performance with TCP* over 40GbE on NUMA architectures for CMS Data Acquisition, CMS CR-2014/081
 - Hannes Sakulin (CERN) et al (CMS DAQ group), The new CMS DAQ system for run 2 of the LHC, CMS CR-2014/082
- **TIPP 2013** (coming up in 20 minutes) 3rd talk in the on-going session scheduled for 16:50),
 - Andrew Kevin Forrest (CERN) et al (CMS DAQ group), Boosting Event Building Performance using Infiniband FDR for CMS Upgrade, <u>https://indico.cern.ch/event/192695/session/2/?slotId=0#20140602</u>

