Calorimeters for precision timing measurements in high energy physics

D. Anderson¹, A. <u>Apresyan</u>¹, A. Bornheim¹,

J. Duarte¹, C. Pena¹, A. Ronzhin², M. Spiropulu¹,

J. Trevor¹, S. Xie¹,

¹ California Institute of Technology

² Fermilah

Challenges

- Some key signatures at HL-LHC
 - o Higgs VBF and W_LW_L scattering with *forward jets*
 - *Vertex identification* for $H \rightarrow \gamma \gamma$
 - Searches in final states with <u>MET</u> from LSP
 - Precision studies of new physics which may be discovered at the LHC in the next decade
- Large samples needed to fully exploit LHC
 - \circ <PU> ≈ 140 at HL-LHC → 50nb/sec

This event was on the tail of the distribution in 2012, it will be a "low" PU event in HL-LHC

The environment in HL-LHC

- Two main scenarios for HL-LHC: with and w/o crab-cavities
 - $(d<\mu>/dz)_{max} \sim 1.0 \rightarrow 1.3 \text{ event/mm} \rightarrow \text{i.e. up to } 1.4 \rightarrow 1.8 \text{ event/mm}$
- Precision timing capability to improve event reconstruction in the HL-LHC environment
 - Timing provides an additional and independent means for PU identification
- Soft tracks & ~1/3 of jet not reconstructed even with extended tracker
 - o Neutral energy from PU contributes about ~100% to 50 GeVjet @140PU

Precision timing calorimeters

- Investigating options of high precision timing detector
 - o Secondary emitter material as active element in a sandwich type calorimeter
 - Crystal based calorimeter to directly extract timing
 - o See A. Bornheim talk at CALOR 2014 (session *O4.12*)
- Target resolution of O(20-30 psec)
 - ∘ Allows reconstruction of H $\rightarrow \gamma \gamma$ vertex and pileup suppression
- Combined timing + energy measurement to remove jets/ photons/MET contamination from pileup

Fast timing in calorimeters

- Starting point in exploring precision timing in calorimeters
 - Secondary particles from EM shower are detected by MCP
 - o MCP are intrinsically very fast → calorimeter with very fast timing
- Experiment in the FNAL test beam with electron and proton beams:
 - "Development of a new fast shower maximum detector based on MCP-PMT as an active element", A. Ronzhin, S. Los, E. Ramberg, M. Spiropulu, A. Apresyan, S. Xie, H. Kim, A. Zatserklyaniy; NIM A (doi: 10.1016/j.nima.2014.05.039)
 - o A. Apresyan talk at CALOR 2014 (session *O4.13*)
- Investigating the option of using bright fast scintillating crystal to extract fast timing
 - Our experiment in the FNAL test beam with electron and proton beams in March and May 2014
 - o Measurements and characterization of components at Caltech
 - A. Bornheim talk at CALOR 2014

Test beam setup

- Two types of MCP-PMTs used: Photek 240 (A/B), and Photonis (PH)
- DAQ is composed of 2 DRS4 waveform digitizer units
- Primary proton beam: 120 GeV/c, beam of positrons: 12 and 32 GeV/c
- Vary several parameters of the setup
 - o Change lead thickness; Add quartz radiators in front of PH

Characterization of the ingredients

- Assign a time stamp to each event
 - o Mean value of Gauss fit to the pulse at maximum
- Electronic time resolution
 - o Time difference of a split signal into same DRS4
 - Slightly different for two units: 4.8 and 6.7 ps
- TOF time resolution for protons
 - Resolution for the two Photek 240 placed in line was found to be ~16 ps

Photek 240 signal recorded by a DRS4 during 120 GeV/c protons run passing through the input window.

Time resolution and secondary emission

- Time resolution 20-30 ps achieved in beam for shower arrival
- No significant difference in TR at 12 GeV vs 32 GeV beams
 - o No big TR changes for different lead thickness in these measurements

Precision timing with crystals

- CMS considers Shashlik with crystals in HL-LHC
 - o LYSO/CeF3 with Tungsten, read out with fibers
- We are pursuing an experimental program to extract fast timing from these bright fast scintillating crystals
 - Contributions from 4) and 5) are shared between secondary emission and crystal setup

Scintillation and shower properties

- Timing information is extracted from the leading edge of the signal the rise time of the light output is important.
 - LYSO: Scintillation light rise time $t_R = 75 \text{ ps}^*$, ~30K photons/MeV
- From simulation: shower fluctuations in high P_T photon showers cause fluctuation of the mean shower time of O(10) psec, dominated by the conversion depth.

Experimental setup

- Measurements at Caltech and Fermilab test beam facility to characterize timing properties of crystal based system
 - o Photek 240, DRS4 shared with p 6-8; also Hamamatsu R3809U MCP-PMT
 - Latest measurements last week: some results are preliminary

Beam runs

- 120 GeV proton, and 4, 8, 12, 16, 32 GeV runs with electrons
- Cherenkov counter upstream for particle ID
- The DAQ system based on DRS4: ~5 psec resolution
- Photek 240 or Hamamatsu R3809U used for light detection,
 ~20 psec resolution
 - Lead bricks in front of the MCP to avoid direct hits into the MCP

Time reconstruction

- Measure the time of flight resolution between reference MCP-PMT and scintillation light
 - o Signal in the reference are from Cherenkov light in the MCP-PMT window
- Time stamps in the detectors are reconstructed with:
 - Mean of a Gauss fit near the pulse maximum for the reference detector
 - Constant fraction, fit on the rising edge for the LYSO detector

13

Time of flight resolution: small xtal

- Event selection:
 - Cherenkov counter tag electron evts;
 Large signal in veto MCP to identify showers
- Special runs XP2020, or LYSO mounted ⊥ to the beam
 - o Pulses are dominated by scintillation
- TOF resolution ~30 psec for various beam energies

ECHNOLOGY

Time of flight resolution: Shashlik tile

- Small LYSO plates (1.4x1.4x0.15 cm) as from LYSO/W Shashlik prototype.
- Measure time resolution around 50 ps for 8 GeV electrons,
 - o Difficult to control alignment, impact of direct hits on MCP window
 - o Measurements taken with XP2020, normal incidence mounting on MCP

Time of flight resolution: large xtal

- 120 GeV proton runs
- 20cm LYSO crystal perpendicular to the beam, 2x2 mm²
- MCP readout on both ends scan in position along the crystal
 - Resolution between reference and either of MCP around 60 psec

σ between ref and one end

correlation between two ends

σ between ref and one end after correction

LYSO/W Shashlik cell

- Characterization and optimization of the readout of the Shashlik cell (1.4x1.4x14cm³ LYSO/W)
 - o Separate test with readout both options: through fibers, or single LYSO tile
 - o Analysis ongoing, results look very promising
- Resolution around ~60 psec achieved in the first attempt with electron beam

Conclusions

- Precision timing in calorimetry is demonstrated to be possible, achieved 20-30 ps in test beams
 - o Numbers are *before* unfolding the DRS4, photo sensors...
 - o Becoming sensitive to the DAQ limitations, bandwidth, reference resolution
- Ongoing work towards developing a technology applicable to the CMS endcap calorimeter upgrade
 - o Further beam tests planned later in the summer and in fall this year
- Single channel time resolution of a few 10 ps seems achievable for incident particle energies of a few GeV

Backup

Radiation resistant and fast SM detector

radiation resistant and fast". Preprint IFVE 90-99, Protvino, Russia,

1990.

Event selection and analysis

- Assign a time stamp to each event
 - Mean value of Gauss fit to the pulse at maximum
- Event selection to eliminate abnormal pulses
 - Large signals above 500 mV were rejected because they saturated the DRS4 inputs.
 - Pulses with an irregular peak profile were rejected
 - Selected the pulses with larger than 20 mV amplitude for analysis.
- For Photonis linear dependence of the ΔT is observed
 - Perform a time correction for each event on the measured amplitude.

Photek 240 and Photonis MCP-PMT

10 μm pore size, 41mm aperture, PC-MCP distance ~5mm, rise time~60 ps, SPTR~40 ps

25 μm pore size, 60x60mm² sensitive area, rise time~300 ps, SPTR~120 ps, much cheaper than Photek

Measurements with e+beam

• Measure the dependence of the <u>signal amplitude</u> and <u>time resolution</u> on the *lead thickness*, and Cherenkov by varying the *quartz thickness*

Measurements with e+beam

- Shower particles are detected **both** through Cherenkov (in the entry window) **AND** *direct interaction* with the MCP.
 - o Significant component from direct detection of the secondary emission
- ~ 70% of the MCP-PMT response is due to the *secondary emission* and 30% is due to Cherenkov light in the 2 mm thick input window.

