

Impedance measurements at SLS

E. Koukovini-Platia CERN, EPFL

Many thanks to M. Dehler, N. Milas, A. Streun

Y. Papaphilippou

CLIC DR/ SLS parameters

	•	, ,,	CLIC DIN 3L3 pai
Parameters			CLIC@3TeV
Е	nergy	[GeV]	2.86
Circumference [m]			427.5
Е	Energy loss/turn [MeV]		4.0
R	F volt	age [MV]	5.1
S	tationa	ary phase [°]	51
N	Iomen	tum compaction factor	1.3e-4
D	ampir	ng time x/s [ms]	2/1
N	lumbe	r of dipoles/wigglers	100/52
D	ipole/	wiggler field [T]	1.0/2.5
В	end gi	radient [1/m ²]	-1.1
В	unch 1	population $[10^9]$	4.1
Horizontal normalized emittance [nm.rad]			1] 456
Vertical normalized emittance [nm.rad]			4.8
		length [mm]	1.8
	10000	-	
Vetrtical norm. emittance [nm]	1000 -	- - - -	◆ MAXIII
ttar		- - - -	ALBA APS ELETTRA
mi		_	PETRAIII SPRING8
m. 6	100	• PEPX NSLSII AST	RIDCESPTA BESSYII
ıor		NLC • ATF desi	ESKF
al r	10 -	· ·	ILC ALS
rtic	10 -	MAXIV ATF • CLIC	DIAMOND • ASP
Vet		CLIC (500GeV	* <u>SLS</u>
	1 10	0.0 1000.0	10000.0 100000.0
	10	1000.0	100000.0

Horizontal norm. emittance [nm]

SLS Parameter	Value
Energy [GeV]	2.411
Circumference [m]	288
Energy loss/turn [MeV]	0.54
RF voltage [MV]	2.1
Mom. Comp. factor	6.05e ⁻⁴
Damping times h/v/l [ms]	8.59/8.55/4.2 6
Hor. emittance [nm rad]	5.6
Vert. emittance [pm rad]	0.9
Bunch length [mm]	3.8
Energy spread [%]	0.086

- CLIC damping rings target ultralow emittance in all 3 dimensions for relatively high bunch charge SLS: Vertical emittance reduced to
- a minimum value of **0.9±0.4pm** (CLIC damping rings target vertical emittance) which is a **new world record**
- SLS ideal for beam dynamics measurements

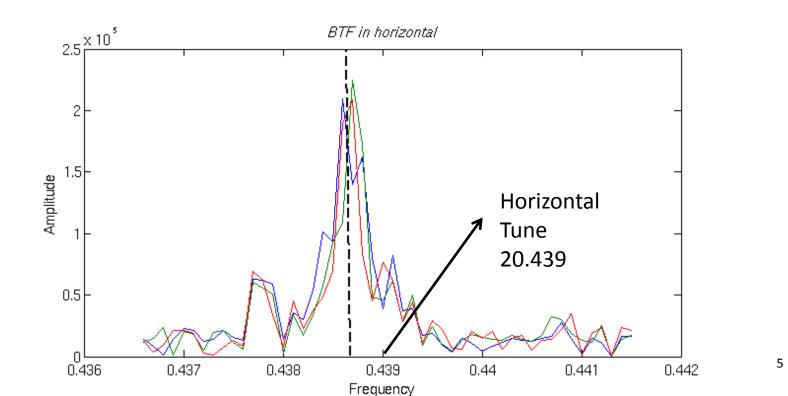
Collaboration and Measurements at SLS

■ 30 of April \rightarrow 1st visit at SLS, discussion on possible measurements and shifts

Measurements that were suggested:

Beam transfer function measurement (in all planes)

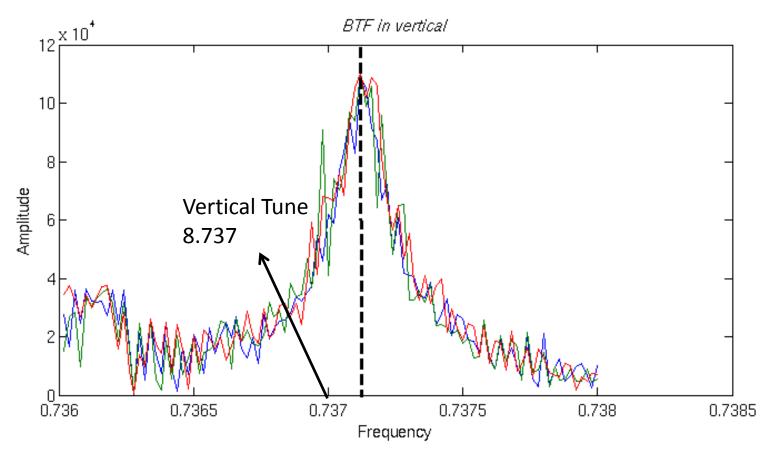
■ 1st shift: 15th of May


1st shift: Beam Transfer Function Measurement (I)

- 15/5/12 → 1st shift
- Beam of 480 bunches with a current of 50 mA
- Tunes Qx, Qy, Qs : 20.439, 8.737, 0.00545
- High positive chromaticity: 5
- Excite the beam with a sinusoidal signal generated (signal generator whose parameters can be varied remotely)
- The signal generator is connected to an amplifier and a read-out device
- Observe the response of the beam
- Post process analysis
- ➤ Over certain number of turns, do a FFT and obtain the amplitude vs frequency/mode number (of the Coupled Bunch Mode (CBM))
- ➤ Horizontal, vertical & longitudinal plane measurements
- ➤ Goal → Test the diagnostics, scripts to collect the data, noise level etc

1st shift: Beam Transfer Function Measurement (II)

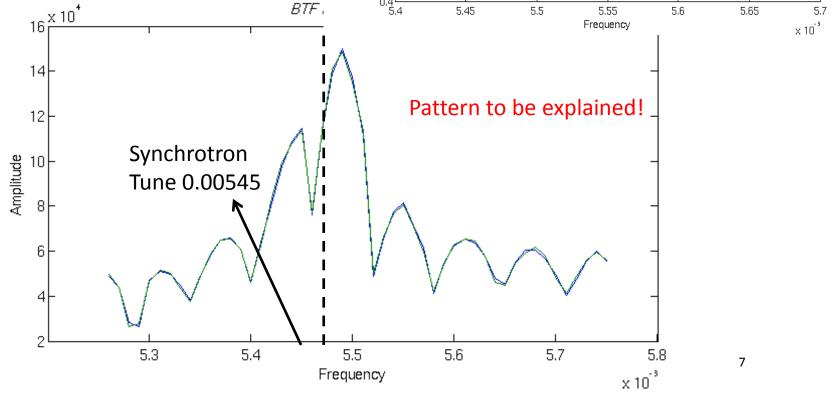
Horizontal plane


- Excite the beam (with a horizontal kicker) with a signal from the generator
- Scan over the tune resonance (.439)
- 500 turns data → FFT → amplitude vs frequency
- 500 turns data → FFT → amplitude vs mode number of the CBM → invalid measurements (?accuracy of the frequency set)

1st shift: Beam Transfer Function Measurement (III)

Vertical plane

- Open the scraper (3mm radius) → 9mm
- Excite the beam (with a vertical kicker)
- Scan over the tune resonance (.737)
- 500 turns data → FFT → amplitude vs frequency



1st shift: Beam Transfer Function Measurement (IV)

Longitudinal plane

- Excite the beam (with a longitude
- Scan over the tune resonance ()
- 500 turns data → FFT → amplitu
- 500 turns data → FFT → amplitumeasurements (?accuracy of the

1st shift: Beam Transfer Function Measurement (V)

First conclusions

- Measure the resonances
- Data to be further analyzed and explain the features in the plots obtained by the measurements
- To be solved → signal generator and the frequency setting in order to do correct CBM measurements!
- ➤ Next shift → resolve these matters & RF cavity tuning

Measurements suggested:

- BTF for each bunch (longitudinal) → effects of 3rd harmonic, BB impedance
- Tune shift over intensity for single bunch in the transverse plane (vertical) (to begin with). Max current 400mA (Natalia Milas has done this in the past but the desired results were not obtained)
- Movable scraper, tapered, which could be used to see the effect in the impedance
 → need to calculate the impedance of the scraper
- Measure tune shift with intensity of a bunch placed after a long train, changing also the distance of this bunch from the train (and or the length of the train), and compare that with the results from single bunch
- Impedance- IBS measurements (F.Antoniou, N. Milas, A. Streun)
- ➤ Later shifts beginning of July (to be confirmed)
- ➤ Plan several shifts till September

Thank you for your attention!