

TIARA Mid Term Meeting 14th June 2012 – Madrid

TIARA-PP WP 9 : TIHPAC

Test Infrastructure for High Power Accelerator Components

Sébastien Bousson (CNRS/IN2P3/IPN Orsay)

On behalf of the WP9 participants: CERN, IPNO, ESS

WP9 raised from the following consideration: What would be the necessary test infrastructures for developing the key elements of the EURISOL project ?

EURISOL is the next generation of a facility aiming at the production of radioactive ion beams (RIB) using the ISOL technique.

Among all the technical challenges raised by this project, 2 key components have been identified which will require an important R&D program and an intense experimental program to fulfill the Eurisol requirements:

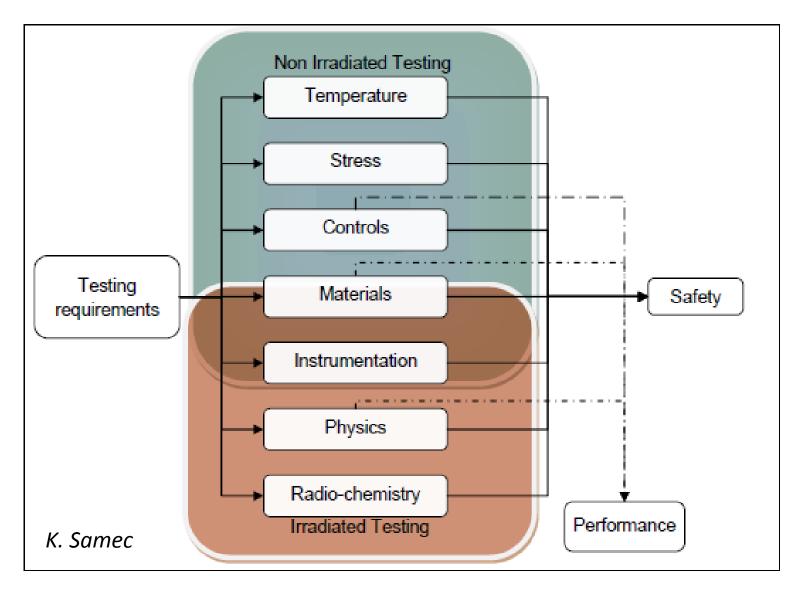
The multi-MW target complex

> The low beta superconducting cavities (used for the driver and for the post-accelerator linac)

Sub-Task 1: Multi MW target development

The main idea of sub-task 1:

Develop a versatile target concept to be tested with beams at all possible locations, meaning over a wide range of beam power (several kW to MW).


Full scale test of the final MMW target available only in the final facility ! Achieving the design of the full scale target (ex. 4 MW for Eurisol) will require several partial tests: sub-components, irradiation at lower power, instrumentation tests...

For that, a versatile target is required to test concepts, instrumentation, material science (like fatigue, heat transfer), safety (primary/secondary fluid interactions), etc...

The target itself should be adaptable, but keeping all services (heat exchanger, loop...) externalized (i.e. common for all target geometries).

Break-down of items/systems to be tested:

TIARA identified needs:

- Reliable neutron sources to be developed to accommodate the growing power delivered by accelerator development in Europe
- Beam power in GeV range implying spallation
- High beam power deposition densities

Fundamental parameters for the TIARA high-power target development:

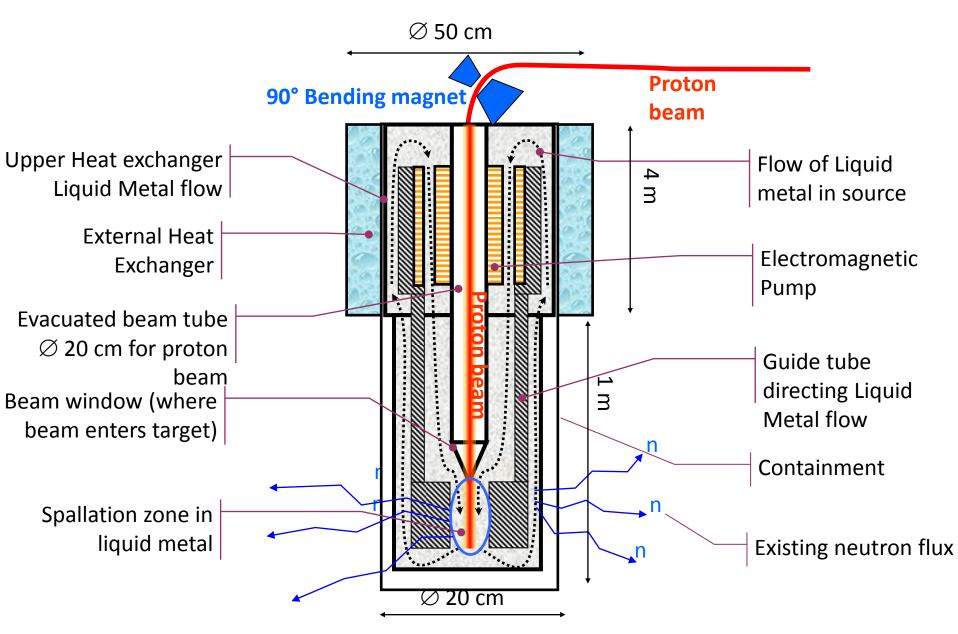
Parameters	Value
Beam power	200 kW- 5 MW
Beam energy	70-Mev – 1 GeV
Heat deposition in target	10 kW/cm3
Source neutron production rate	up to 10 ¹⁸ n/s
Source surface neutron flux	up to 10 ¹⁵ n/cm ² s
Target cooling medium	Helium / liquid metal
Target material	Be, Ta, W, Pb, Bi

Specifications/requirements have been identified for the different test facilities (irradiated/non-irradiated; liquid/metal target; safety issues...)

3	TARGET TESTING FACILITY SPECIFICATIONS	26				
3.1	Strategy pursued in fulfilling overall requirements	26				
	3.1.1 Required technological breakthroughs	27				
	3.1.2 Options for developing solid state targets	28				
	3.1.3 Options for developing liquid metal targets	29				
3.2	Non-irradiated testing requirements	29				
	3.2.1 Solid target testing	29				
	3.2.2 Liquid target testing	31				
3.3	Safety testing	33				
	3.3.1 Hazard assumptions	33				
	3.3.2 Sub-scale and component testing	34				
	3.3.3 Full-scale test of the entire target	35				
3.4	Irradiation testing	37				
3.5	Radio-chemical analysis	40				
3.6	Options for improving the material technology base					

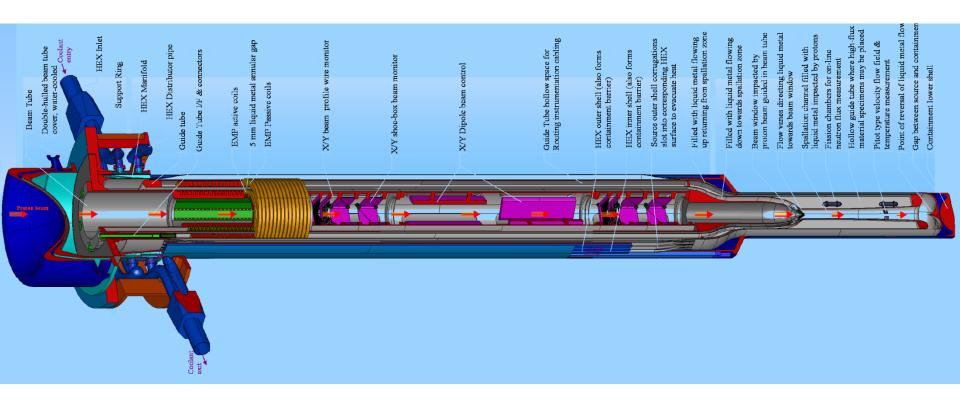
- 1. Necessity: replicate helium flow conditions in the target, hence to set up a loop using gas as a coolant with the following main components:
- Gas loop 16 Bar rated tightness.
- Pumps rated at 2 kg/s (for He at 10 Bar , 5193.2 [J/kgK] , 2 [kg/m3]).
- Heat exchangers able to handle 5 MW * 70% = 3.5 MW.
- Gas flow meter.
- Dedicated multiple helium leak detectors (for wheel target design tests).
- Pressure taps and Pitot tube locally.
- Thermocouples mounted in gas stream
- Data acquisition through appropriate gas-tight connectors to all sensors.
- Control and power.
- Adequate data storage.

- 2. To replicate the beam: produce an environment that is realistic in terms of heating. Different heating methods are to be used:
- Volume heating: induction for the solid target replication deposition from the beam sufficient to reach 3.5 MW (5 MW @ 70% deposited beam fraction)
- Surface heating Laser rated at 10 kW to test the window or any other point of entry of the beam, depending on the configuration chosen (wheel).
- As a backup to the induction method, conventional Ohmic resistors may be used. They lack the power density required for the full beam but may be used however for smaller sub-scale testing. Power limit ~200 kW

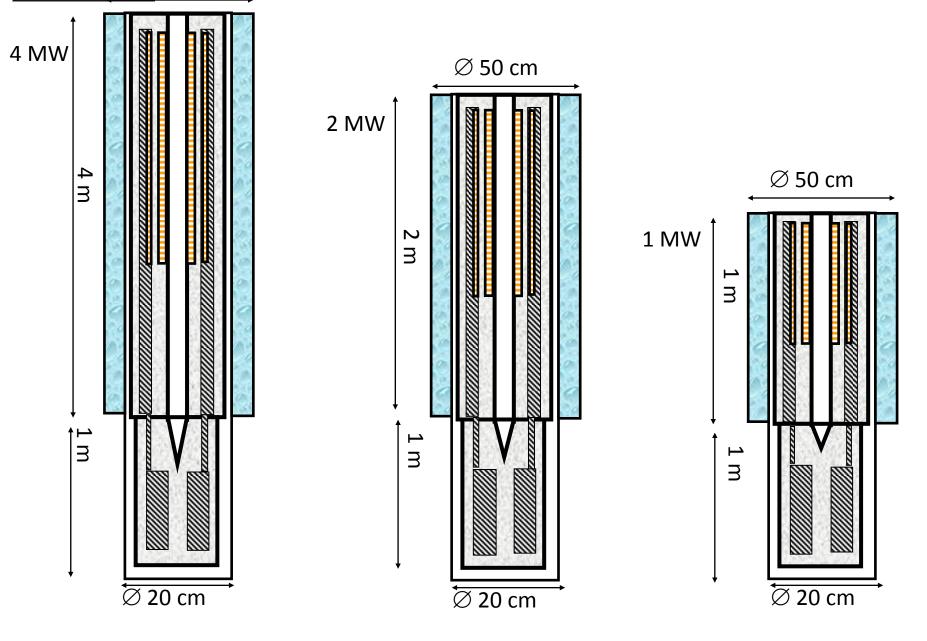


3. To assess the effect on the target, it shall be adequately instrumented:

- Thermal and mechanical stresses: strain gauges of different types. The majority should withstand up to 300°C and may be based on gratings deposited on conventional thermoplastic. A few will be needed to withstand up to 1000°C and can rely on interferometry/fiberglass strain gauge technology
- Thermocouples on structure.
- Infrared camera to capture thermal maps, it is a method that is particularly well adapted to a Helium environment which is transparent to IR
- Low acquisition rates are sufficient for structural response.

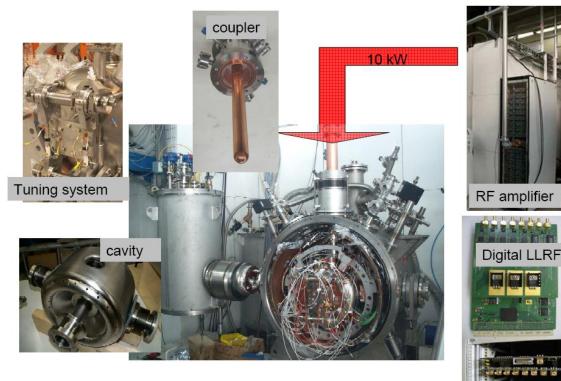


Preliminary liquid concept - Schema



Preliminary liquid concept - Engineering detail

Modularity in LM concept



Sub-Task 2: low beta cavity test cryomodule

Before assessing that a SC cavity is validated for an operational use in an accelerator, the final experiment is a cryogenic test at nominal RF power of the fully equipped cavity (power couplers, cold tuning systems...)

Very few "accelerator configuration" test cryostat are existing in Europe and they are only designed for elliptical cavity testing (CHECHIA, HOBYCAT, CRYHOLAB).

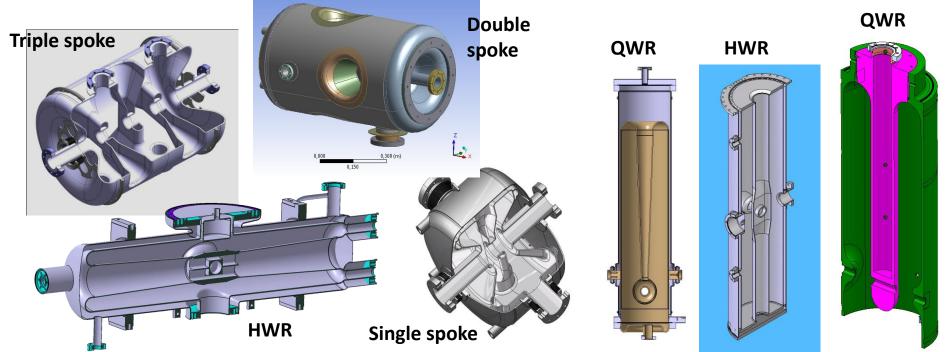
Such a cryostat, specific and devoted to low beta SC cavities will be a useful complementary equipment.

As defined in the WP9 work plan, work has started with the study of user requirements to establish specification for the low beta cavity test cryostat.

Identification of the user requirements for the test cryostat: 4 main categories of requirements have been identified:

- 1. Geometric dimension (cavity type and physical capacity)
- 2. Integration of couplers and cold tuning system
- 3. Cryogenic requirements
- 4. Assembly requirements

EU Project driven requirements:


EURISOL, MYRRHA, ESS, IFMIF, HIE-ISOLDE

With potential interest for:

LRF (HUELVA), ESS-BILBAO, ion or RIB post-accelerators,... ... and many others outside Europe !

- Different cavity geometries (type), beta, and frequencies
 - Half-wave resonators
 - Quarter wave resonators
 - Spoke cavities (single, double or triple spoke)
 - Others: re-entrant, CH,...
- Integration of the possibility to mount a superconducting magnet for residual magnetic field test or potential pollution during assembly
- Vertical or horizontal positioning to be envisaged for some cavities

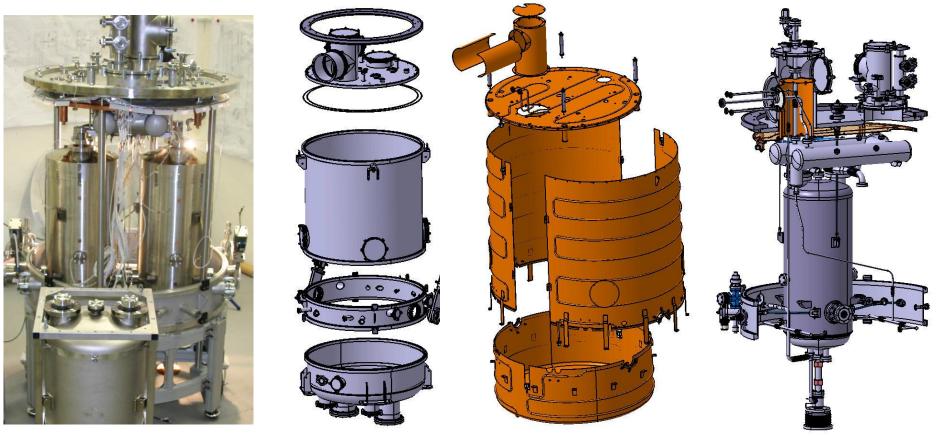
Integration of couplers and cold tuning system

Integrating couplers and tuners for different geometries is the main concern for this versatile cryostat

- Power couplers: For all cavity type, geometries are very different: the cryostat should have the possibility to have couplers located on the the bottom or on the side of the module (on top: option discarded).
- Cold tuning system: Also very different from one to each other: tuning by deformation, volume insertion, integration of piezo actuators; using cold or warm motors.

Only a cryostat with high flexibility (many openings & access) can solve this issue.

Cryogenic specification


- Operating temperature: 4.2 K or depressed He bath (2 K typically)
- Power: the cryogenic system should be able to handle about 50 watts (in average) of dissipated power at 2 K
- Cooling time: in order to avoid the "100 K effect", the module should be able to cool down rapidly (typically, not more than one hour between 130 K and 70 K)

Assembly requirements

- The cryostat assembly has to be feasible in a huge variety of clean rooms : height requirements not too important, as simplest as possible assembly tooling, lowest possible amount of material entering in the clean room (pollution control) => concerns with the clean air blowing direction
- No requirements on any alignment device (has only meaning in a real accelerator module)

- Once the user requirements and specifications of the test cryostat was achieved, conceptual design study has started.
- The starting idea is to adapt the Spiral-2 high beta cryomodule:
 - with simplification (no beam ports, no alignment requirement)
 - but adding complexity (more openings, versatility, adaptability)

WP 9 Work Status: Gantt chart

N°	Task Name		Аг	nnée 1					née 2					Année	-			Année 4
1	WP9 : TIHPAC (Test Infrastructure for High Power Accelerator Components)	T4 36%		T1	T2	Т3	T4		ſ1	T2	T3	T4	4	T1	T2	T3	T4	<u> T1 </u>
2	Task 9.1 M-MWIF: Multi MW Irradiation Facility for complex target testing	40%	188	188888888	3888888	88888888	888888888		8888888	888888	8888888	1000008888		88888888		888888888	88888888	J.
3	9.1.1 DSITF: Definition and specifications of Irradiation Test Facility	100%	Ċ,					,										
4	9.1.1.1 IIF: Identification of the required Irradiation Facility	100%	•		-													
5	9.1.1.2 SIF: Specifications of the irradiation test facility	1		1009	6 🦾			à.										
6	M9.1 DSIF: Report on the Definition and Specifications of the Irradiation test Facilities]					100%	Š.										
7	9.1.2 DSITF: Design Study of the high power Irradiation Test Facility						11%	Ċ.									(2
8	9.1.2.1 PDITF: Preliminary Design study of high power Irradiation Test Facility						70%			<u>h</u>								
9	M9.2 PDIF: Preliminary Design report on the high power Irradiation test Facility]							0% @	Š								
10	9.1.2.2 TDITF: Technical Design report on the high power Irradiation Test Facility]							0%	Č								r I
11	D9.1 TDIF: Technical Design report of the high power Irradiation test Facility																0%	۹.
12	Task 9.2 DCTC: Design of a low beta Cavity Test Cryostat	32%	- 188	388888888	3888888	88888888	888888888	88888	8888888	888888	8888888	388888888	188888	88888888		888888		
13	9.2.1 DSTC: Definition and Specification of the low beta SC Test Cryostat	99%	Ċ.					5	2									
14	9.2.1.1 IUR: Identification of Users Requirements	100%	•			<u>L</u>												
15	9.2.1.2 STC: Specifications of the low beta_SC Test Cryostat			1	00%				1									
16	M9.3 URCS: Report on the User Requirements and setting up of the test Cryostat S						09	% 🄇	ĥ									
17	9.2.2 DTSCS: Design of the test cryostat (vacuum tank, shielding, supporting system	!					11	%										
18	9.2.2.1 PDTSCS: Preliminary Design study Tank, Shielding, and Cavity supporting						44	0%	Þ		D_							
19	M9.4 PDCC: Report on the Preliminary Design study of the low beta SC Cavity test									0%	Š.							
20	9.2.2.2 ADTSCS: Advanced Design study Tank, Shielding, and Cavity supporting S								↓	0	% 👅							
21	9.2.3 CDCCB: Conceptual design study of the associated cryogenic cold box						!	5%	ď							┣─⊥		
22	D9.2 TDCC: Technical Design report of the low beta Cavity test Cryostat															0% 🍑		

Task	Short Name	Description	% Achievement
9.1	M-MWIF	Multi MW Irradiation Facility for complex target testing	40 %
9.1.1	DSIF	Definition and Specification of the Irradiation test Facility	100 %
9.1.1.1	llF	Identification of the Irradiation test Facility	100 %
9.1.1.2	SIF	Specifications of the Irradiation test Facility	100 %
9.1.2	DSIF	Design Study of the high power Irradiation test Facility	35 %
9.1.2.1	PDIF	Preliminary Design study of the high power Irradiation test Facility	70 %
9.1.2.2	TDIF	Technical Design report on the high power Irradiation test Facility	0
9.2	DCTC	Design of a fully equipped low beta Cavities Test Cryostat	30 %
9.2.1	DSTC	Definition and Specification of the low beta SC Test Cryostat	100 %
9.2.1.1	IUR	Identification of the User Requirements	100 %
9.2.1.2	STC	Specifications of the low beta Test Cryostat	100 %
9.2.2	DTSCS	Design of the vacuum Tank, Shielding, and Cavity supporting System	25 %
9.2.2.1	PDTSCS	Preliminary Design study Tank, Shielding, and Cavity supporting System	40 %
9.2.2.2	ADTSCS	Advanced Design study Tank, Shielding, and Cavity supporting System	
9.2.3	СДССВ	Conceptual Design of the associated Cryogenic Cold Box	5 %

Milest	Milestones						
Num	Nat	Name	Description	Month	Status		
M9.1	R	DSIF	Report on the Definition and Specifications of the Irradiation test Facilities	12	Issued M12		
M9.2	R	PDIF	Preliminary Design report of the high power Irradiation test Facility	16	Planned for M21		
M9.3	R	URCS	Report on the User Requirements and setting up of the test Cryostat Specifications	13	Issued this week		
M9.4	R	PDCC	Report on the Preliminary Design study of the low beta SC Cavity test Cryostat	18	Planned for M20		

Delive	erables	5		
Num	Nat	Name	Description	month
D9.1	R	TDIF	Technical Design Report of the Multi-MW test Irradiation Facility	36
D9.2	R	TDCC	Technical Design Report on the SC Cavity test Cryostat	33

- Two first milestones reached
- Slight delay expected for M9.3 & M9.4 but without further consequences
- Work is progressing well, but still a lot to do !

WP9: Work Status

TIARA Project

Work Package 9: TIHPAC - Test Infrastructure for High Power Accelerator Components TIHPAC

Task 9.1: Multi MW Irradiation Facility for complex target testing

Milestone nº M 9.1: DSIF Report on the Definition and Specifications of the Irradiation test Facilities

Planned Date (month):	12
Achieved Date (month):	12
Lead Contractor:	CE

RN

Project acronym:	TIARA
Project full title:	Test Infrastructure In Accelerator Research Area
Start of the Project:	1 st January 2011
Duration of the project:	36 Months
DSIF Author:	Karel Samec Nucl. &. Mech. Eng. CERN Associate ENSI Nuclear specialist
Task Coordinator:	Yacine Kadi Prof. Dr. Phys. CERN staff physicist Hi-Isolde facility manage

TEST INFRASTRUCTURE AND ACCELERATOR RESEARCH AREA

WP 9 - TIHPAC

Test Infrastructure for High Power Accelerator Components

Milestone 9.3: User requirements and specifications for the low beta superconducting cavity test cryostat

Hervé Saugnac Sébastien Blivet Sébastien Bousson CNRS / IN2P3/ IPN Orsay

Wolfgang Hees ESS

June 2012

Work supported by the European Commission under the FP7-INFRASTRUCTURES-2010-1/INFRA-2010-2.2.11 project TIARA (CNI-PP). Grant agreement no 261905.

Report M9.1

Report M9.3

Thank you !