

Head and tail dump

for the booster injection region

Melanie Delonca <

Thanks to :

- C. Maglioni <
- R. Chamizo (
 - O. Aberle <

. . .

- > Dump space & layout
- > Loading cases
- > Additional consideration
- > Preliminary analyses :
 - > Instantaneous ΔT
 - > Steady operation
- > Conclusions and open questions

Dumps space & layout

EDMS 963395

- Head dump located into BI.SMV3 magnet
- Tail dump located into BI.SMV1 magnet

Minimum	Head	Tail
Dimensions	dump	dump
Width W	40	40
[mm] – x		
Height <i>H</i>	40	40
[mm] – y		
Length <i>L</i>	200	200
[mm] – z		

Dumps space & layout

EDMS 963395

Operating Conditions	Location	Load	Pulse [µs]	Energy [kJ]
Nominal	Head	-	-	0
Accidental distributor failure	Head	1E14 p+	400	2
Nominal	Tail	-	-	0
Accidental distributor failure	Tail	2.5E13 p+	100	0.5

* Following discussion with C. Carli, K. Hanke and M. Vretenar about possible LLRF incident.

Worst case scenario: accident on the **Head dump** BUT

Interception are possible during normal beam operation $* \rightarrow 2$ more cases were considered and studied for the Head dump

Three loading case:

Operation:

- (1) accident

- -- \rightarrow 1 full Linac 4 pulse \rightarrow Transient
- (2) constant beam Before every beam pulse \rightarrow Steady-state
 - (3) prolonged accident --> At the beginning of every beam pulse, **one week** duration once per year \rightarrow Steady-state

Parameter	Symbols	<i>Case 1:</i> Accident	Case 2: Constant beam	Case 3: Prolonged Accident
Current (mA)	Ι	40	0.5	20
Pulse length (µs)	tp	400	50	20
Cycle frequency (Hz)	f	1.11	1.11	1.11
Max. pulse intensity	Np	1.10^{14}	1,56.10 ¹¹	2,5.10 ¹²
Power deposited (W)	Р	2841	4.4	71

In Steady-state operation, low power:

No active cooling is foreseen to be necessary

Passive cooling by radiation only.

Several aspects must be considered

- > Space constraint
- > Induced temperature and stresses
- > Vacuum
- > Activation
- > Fire risk
- > Electrical risk

Graphite R4550

Property	Unit	Value
Average srain size	μm	10
Density	g/cm3	1.83
Open porosity	Vol%	10
Average pore size	μm	1.5
Permeability	cm2/sec	0.04
Rockwell Hardness	HR 5/100	95
Specific electrical resistivity	μΩm	13
Flexural Strength	MPa	60
Compressive Strength	MPa	125
Young's modulus	GPa	11.5
Poisson ratio	-	0.1
Thermal conductivity	W/mK	100
Thermal expansion coefficient 20-200 °C	10^{-6} K^{-1}	4.00
Ash value	ppm	20

Half dump LEFT view >

Standard use at CERN:

appropriated pumping.

Loading case	ΔT analytical (K)	$\Delta T ANSYS (K)$	Error %
Case 1	576	570	1
	1 17	1.06	0.4
Case 2	1.17	1.00	9.4
Case 3	18.6	17.09	8.1

Maxi serv. Temperature to be defined based on degassing tests.

Support configuration	Top (A)	Back (B)	(C)	
Case 1: complete failure				
Maximum vertical deflection $[\mu m]$	3.96	4.44	13.09	
Maximum Thermal Stress [MPa]	31	31	31	
Max Stassi Eq Compressive σ_{SC}^{\max} [MPa]	-47.3	-47.2	-47.1	
<i>Case 2: continuous</i>				
Maximum vertical deflection $[\mu m]$	0.00611	0.0063	0.0063	
Maximum Thermal Stress [MPa]	0.05	0.05	0.05	
Max Stassi Eq Compressive σ_{sc}^{max} [MPa]	-0.075	-0.074	-0.074	
Case 3: prolonged accident				
Maximum vertical deflection $[\mu m]$	0.1	0.1	0.1	
Maximum Thermal Stress [MPa]	0.81	0.81	0.81	
Max Stassi Eq Compressive $\sigma_{\scriptscriptstyle SC}^{\scriptscriptstyle m max}$ [MPa]	-1.22	-1.2	-1.2	

Limit in compression: **125 MPa**

Maxi deflection allowed: **0.5 mm** (guess)

M. Delonca

Steady operation

steady operation + ΔT

M. Delonca

- > The analyses have been done based on up-to-date specs : temperatures and stresses are not an issue
- > Support type A or B are preferred
- > Detailed study can be done ONLY when the support is defined

Open questions:

- > Support?
- > Bake-out?
- > Name of the device?

Thank You

Melanie Delonca < EN/STI-TCD

Dear all,

After discussion at the Linac4 core meeting this morning I propose the following specifications for the head dump.

Beam hitting the head dump is divided in 2 contributions, a "constant" beam (data from Alessandra) and an "occasional accident" beam (corresponding to our discussions).

constant beam: 0.5 mA during 50 us before every beam pulse, max. repetition frequency 1.11 Hz.
 occasional accident: 20 mA during 20 us at the beginning of every beam pulse, max. 1.11 Hz, "from time to time".

After the discussion, I would propose to take "from time to time" = "one week duration once per year". To be revised if we see that the activation is too high. I draw your attention to the fact that the beam current for the occasional accident is only 20 mA; we would be crazy to send the full current to the booster if we have a LLRF accident.

Cheers, Maurizio

