Peeking into a Hidden Valley: A First Look at Exotic Phenomenology

Echoes of a hidden valley at hadron colliders. M.J.S. & K. M. Zurek , Phys.Lett.B651:374-379,2007, hep-ph/0604261

Discovering the Higgs through highly-displaced vertices. M.J.S. & K. M. Zurek , hep-ph/0605193

Possible effects of a hidden valley on supersymmetric phenomenology. M.J.S., hep-ph/0607160

M.J.S., in preparation S.Mrenna, P. Skands, M.J.S., in preparation Matthew Strassler Rutgers University

Plan of the Talk

- What's a hidden valley, and why should we care?
- Basic properties of any hidden valley model
 - New neutral particles, possibly light
 - Various decay final states
 - Long lifetimes possible
- Production of HV particles in Higgs boson decay
 - New discovery channel
- Production of HV particles in SUSY processes
 - Obstructions and opportunities
- Production of HV particles in Z' models
 - Several cases with novel phenomenology
 - Hints of need for new reconstruction and analysis methods

Hidden Valley Models (w/ K. Zurek)

hep-ph/0604261

Basic minimal structure

Hidden Valley Scenario

- A scenario, not a model !
 - Represents an enormously wide class of models
 - Models of this type exist in the literature [especially in string theory]
- Hidden sector is an very old concept. [Mirror matter]
 - Observable effects of Hidden Sector have been considered before
- What is new? Why a new name for old ideas?
 - A class with unnoticed fascinating and challenging collider phenomenology.
 - Emphasis on the reasonableness of these models.
 - Implications for Tevatron/LHC experiments are URGENT.
 - Can coexist with any solution to the hierarchy problem
 - SUSY, technicolor, little Higgs, RS, ADD, etc.
 - but in some cases strongly alters its phenomenology!

Hidden Valley Models (w/ K. Zurek)

Communicators

Note that the communicator for production need not be the communicator for the decays...

Hidden Valley Models (w/K. Zurek)

Vast array of possible v-sectors...

Motivation: Why Hidden Valley

- One answer (my answer):
 - Top-down string models predict many hidden sectors
 - Nothing rules these models out experimentally
 - Phenomenology highly varied and unlike typical beyond-SM physics
 - Experimental implications for Tevatron and LHC are substantial and urgent
- Common Question:
 - Why should hidden sector have these properties?
 - A Z' at 1 5 TeV coupling us to hidden sector
 - A confinement (or symmetry-breaking) scale in 1 GeV 1 TeV range
 - Isn't this unmotivated?
 - Aren't such models rather fine-tuned?
- Z' at 1 TeV ?
 - TeV scale Z' not *required* in hidden valley models
- New dynamics at 1 GeV 1 TeV?
 - Question for you: *why is QCD scale so close to EW scale?*

Why is QCD scale so close to EW scale?

Answer: Partly chance; Partly Hierarchy Compression

• Example: SUSY model

- SUSY-breaking sector gives soft masses ~ 100 GeV-1 TeV
- □ This drives EW Symmetry breaking at ~ 100 GeV
- Together these make many particles massive (gluino, squarks, top)
- □ In turn makes the SU(3) beta function more negative
 - From -3 to -7.4
- Increases SU(3) strong-dynamics scale from 1 keV to 100 MeV !!
- Why EW scale at 100 GeV? soft masses at 1 TeV
- Why QCD scale close to EW scale? soft masses at 1 TeV
- SUSY breaking often feeds into valley sector as it does into ours
- Thus several dynamical scales may easily cluster below and near 1 TeV
 - In our sector
 - In some hidden sectors

Decays of v-hadrons to SM

- Imagine a confining v-sector
 - v-quarks, v-gluons \rightarrow v-hadrons
- Most v-hadrons decay immediately to other v-hadrons (like $r \rightarrow p p$)
- Those that do not
 - May be completely stable
 - May decay to SM via communicator(s)
- Several natural pathways for decays
 - Scalars and Pseudoscalars
 - Decays to heavy flavor
 - $\Box \quad X \rightarrow bb, cc, tau tau$
 - Vectors and Axial Vectors
 - Decays democratically
 - $2 \text{ body decay } X \rightarrow ff$
 - Fermions (also some others)
 - Decays democratically
 - □ 3 body decay $X \rightarrow ff Y$
 - Other options (will not appear in today's examples)
 - X → pairs of photons, gluons ;
 - 4-body decays

Lifetimes Long for Many Reasons

Many ways to have long lifetime for v-hadrons

- Light v-hadron has little phase space
- Heavy mass, weak coupling, or mixing of communicator
- Loop factors in communicator mechanism
- Approximate global symmetry in v-sector (e.g. vFCNCs)
- Approximate global symmetry in SM sector
- Etc.
- Multiple v-hadrons in each model \rightarrow multiple lifetimes
- v-Hadron decays may easily be anywhere
 - prompt (d < 0.1 mm)</p>
 - displaced (0.1 mm < d < 3 cm)
 - highly displaced (3 cm < 10 m)
 - outside detector (> 10 m)
- I will discuss prompt and late decays in parallel

Production #1: Higgs boson decay

- Higgs boson very sensitive to new sectors
 - □ True for light higgs, any CP-odd higgs
 - Weak coupling to b quarks
 - New interaction can easily generate new decay mode
 - Branching fraction can be 1, or .01, or .0001
 - Can cause substantial reduction in h \rightarrow photons
 - Rare decays can be experimentally important
 - even for heavier Higgs
- Well-known in wide range of models
 - □ $h \rightarrow \text{invisible}$ (1980s)
 - □ $h \rightarrow 4$ b's, 4 tau's (NMSSM : Dermisek and Gunion 2004)
 - □ Even $h \rightarrow 8$ b's (Chang, Fox and Weiner 2005)

Higgs decays to the v-sector

w/ K. Zurek hep-ph/0604261 hep-ph/0605193

See Dermasek and Gunion 04-06 and many others following $h \rightarrow aa \rightarrow bb \ bb, \ bb \ t \ t, \ t \ t \ t, \ etc.$

Higgs decays to the v-sector

Higgs decays to the v-sector **Overlooked Discovery Mode for the Higgs!! Displaced vertex** w/K. Zurek hep-ph/0604261 hep-ph/0605193 g h h_{v} g v-particles mixing **Displaced vertex**

Precursor: Chang, Fox and Weiner, limit of model mentioned in hepph/0511250, Naturalness and Higgs decays in the MSSM with a singlet. Focus on LEP.

Similar Results: hep-ph/0607204 : Carpenter, Kaplan and Rhee, Reduced fine-tuning in supersymmetry with R-parity violation; $X \rightarrow jjj$

Charged hadron High pT Low pT Electron Muon Photon Neutral Hadron
Tracker All tracks are "truth tracks" No magnetic field Tracks with pT < 3 GeV not shown Tracker radius 3 m Calorimeter. Energy per 0.1 bin in azimuth Length of Orange Box = Radius of Tracker for total transverse energy = 1 TeV

Black Circle: 3.0 cm Red Circle: 12.5 cm

Long-Lived Neutral Weakly-Interacting X

- Spectacular signal if you see it !! Serious challenges for
 - **Trigger**
 - Muons lack pointing tracks
 - Jets are low pT, don't trigger
 - Vertex may be rejected (too far out to be a B meson)
 - Weird-looking event may fail quality control
 - Reconstruction
 - Event may be badly mis-reconstructed
 - Tracks may be missed
 - Calorimeter effects may be misconstrued as cavern background etc.
 - Event may not be flagged as interesting
 - May be thrown into bin with huge number of unrelated, uninteresting events
 - Event Selection
 - The events may be scattered in different trigger streams, reconstruction bins
 - If an event was not flagged as interesting in reconstruction, how is it to be found?
 - Analysis
 - What precisely to look for if the decays are outside the early layers of the tracker?
 - What can be done if decays are in calorimeter or muon system?

Finding the X isn't easy

- CDF/D0
 - Can look (& are now looking) for vertices in beampipe or in pixels (20 cm)
 - No simple method for finding decays further out; no attempts made
 - Events would need to be reprocessed with new tracking software
 - No special triggers for enhancing signal
- CMS/ATLAS
 - CMS/ATLAS cannot easily trigger on low pT events
 - Must study VBF, not easy; or Wh, low rate;
 - Or give up and wait for 2-photon decay (possibly reduced!)
 - Design special triggers for long-lived SM-neutral particles?
 - Studies underway
 - cf. Hidden Valley Working Group, ATLAS [UWashington, Rome 1, Genoa]
 - No reconstruction studies
- LHCb
 - For lifetime 0.1 30 (?) cm,
 - vertexing, low trigger threshold makes up for low luminosity, low acceptance
 - cf. S. Stone, Syracuse group
 - Also European groups working on Carpenter Kaplan Rhee model

Production #1: Higgs boson decay

• Higgs $\rightarrow X X$

Two pseudoscalars X

- $X \rightarrow$ heavy flavor
- $H \rightarrow 4$ b's or tau's
- MJS & Zurek 4/2006,5/2006
 - CDF/D0 mass reach extended?
 - CMS/ATLAS trigger trouble
 - LHCb discovery possibility!
- Other final states possible
 - $XXXX \rightarrow 8 \text{ displaced b's}$
 - $Y Y \rightarrow \text{displaced leptons}$
- Precursor:
 - Chang, Fox & Weiner 11/2005
- Similar results:
 - Carpenter, Kaplan & Rhee 7/2006:
 - $X \rightarrow 3$ jets (R-parity violating SUSY)

X decay	Comment
Prompt	Famous (and difficult) NMSSM scenario
Displaced	New Discovery Channel?!
Highly Displaced	New Discovery Channel?!
Outside Detector	Invisible Higgs

Production #2: SUSY decays

- The SM LSP is *also* extremely sensitive to new sectors
- IF
 - R parity conserved
 - Lightest SM superpartner heavier than the true LSP in another, hidden sector then SM LSP will decay to the hidden LSP

Much more general than SUSY!

- Applies to lightest particle in SM stabilized by
 - KK parity in extra dimensions,
 - T parity in little Higgs
 - Any new global symmetry
- All of this is well known...
 - Gauge mediated SUSY decays to gravitino
 - Neutralino decays to singlino
 - Etc.
- However, useful to review, and note new elements

Production #2: SUSY decays

If the SM LSP decays to hidden LSP

- Need not be electrically neutral or color neutral!
 - Any SM superpartner can be the LSP!
- May be long lived and may
 - Leave a track
 - Make an R-hadron
 - Decay with displaced vertex
 - Etc.
- If hidden sector has complex multiparticle dynamics,
 - Several hidden particles may be produced in SM LSP decay
 - Only one (the hidden LSP) need be stable
 - Others may decay visibly,
 - possibly with long lifetimes

Reduction of Missing Energy Signal

Distribution of Missing Transverse Energy

Production #2: SUSY decays

- Range of phenomenology enormous...
- This can be challenging for CMS/ATLAS/CDF/D0
 - Reduced missing tranverse momentum
 - Multiple soft jets/leptons likely
 - Highly displaced vertices possible
 - Maybe in cascades
- Potentially this is again great for LHCb
 - Cross section for SUSY is so large that low acceptance, luminosity doesn't matter
- Hidden Valley Monte Carlo Simulation program not yet ready for SUSY
 - Stay tuned for updates

Production #3: Z' decays

- This case is the easiest nontrivial one to simulate (after Higgs)
 - Only one flux tube to fragment in the v-sector
- For this reason, well-studied
- Its phenomenology is completely new (I believe)
 - High multiplicity final states
 - with uncalculable multi-jet or W/Z + multijet backgrounds
 - Low rates
 - Not so good for LHCb
 - Challenge for reconstruction and analysis more than for trigger
 - Unlike previous cases, a theorist's problem as much as an experimentalist's problem!
 - Only black hole studies are even vaguely similar
 - But (cf. L Randall's talk) not really

$q \overline{q} \rightarrow Q \overline{Q}$: v-quark production

Analogous to $e+e- \rightarrow hadrons$

Preliminary Studies of Z' events

Explicit studies possibly using HV Monte Carlo (version 0.5 MJS; version 1.0 Mrenna, Skands & MJS)

- Will show Z' decays in 3 models, selected because
 - □ I can simulate them (more or less)
 - Each has phenomenology characteristic of large subclass of HV models
 - Each has adjustable parameters allowing different issues to be explored
 Note there are many other classes of models! Not the full range of phenomenology!
- 1) QCD-like theory with 2 flavors of light v-quarks
 - Without vFCNCs: High multiplicity of b's, large MET
 - With vFCNCs: VERY high multiplicity of b's
- 2) QCD-like theory with 1 flavor of light v-quarks X
 - Heavy pions, metastable rho mesons
 - Moderate multiplicity; rare lepton resonances, endpoints QCD-like theory with 2 flavors, moderate-mass v-quarks
- 3) Strongly-coupled CFT with IR confinement, many flavors
 - Dual to RS model [same as AdS/QCD sector, or as "unparticles"]
 - □ With and without FCNCs: Splash of b quarks (with and without much MET)
- In each case, can consider prompt or late decays
- Currently, understanding of signal incomplete
- If v-hadron decays all prompt, backgrounds clearly important! But which ones?
- Signal study suggests unusual reconstruction and analysis methods are needed.

1) QCD-like v-sector with 2 flavors

MJS, in preparation

- Easy to Simulate: HV0.5 (MJS)
 - Scaled-Up 2-flavor QCD
- Z' mass of 3.2 TeV decays to v-quarks \rightarrow v-hadrons
- v-Hadron States:
 - Triplet of light v-pions that decay to SM (or are stable)
 - Flavor diagonal pion decays to heavy flavor
 - Flavor off-diagonal pion may or may not decay
 - Triplet of heavy v-rho mesons that decay to v-pions
 - Other unstable v-mesons
 - □ Heavier v-baryons (stable, will not see)

Cross-sections and Decay Lifetimes

Charged h High pT Low pT	adron
Electron	
Muon	
Photon	
Neutral Ha	dron

Z' mass = 3.2 TeV v-pi mass = 50 GeV Flavor-off-diagonal v-pions stable

How many quarks/leptons per event?

TABLE I: The case studies.

Results (plots available on request)

MJS, in preparation

- Triggering not a problem here, but reconstruction and analysis are problems
- Number of hard jets < Number of hard partons
 - Jets do not correspond necessarily to hard partons
 - Jets correspond often to parton *clusters*
- → Too few jets → too few b-tags (in many cases) for beating backgrounds
- Standard variables treating jets as objects are not sufficient
- → Need to use unusual correlations among jets, vertices, tracks
- Moderate to high pT jets tend to be single boosted v-pions
- → Need to store sufficient information about jet substructure
- Overall event shape unusual –
- → May need novel shape variables
 - → Working with S. Ellis, J. Miner, C. Vermillion, J. Walsh

Reliable strategy for extracting signal from background still not clear

Effect of Magnetic Field

2) QCD-like v-sector with 1 flavor

Natural and interesting model

- □ Psuedoscalar v-eta' that decays to SM ← *heavy flavor final states*
- □ Vector v-omega that decays to SM ← *dilepton final states*
- □ Scalar states decaying to SM plus a v-hadron ← *dilepton* + *invisible final states*
- Many heavy unstable v-mesons, v-baryons
- But simulation package unavailable
- Replace this model with surrogate
 - 2-flavor QCD and heavier v-quark masses
 - □ Pion becomes heavier; kinematics forbids $r \rightarrow p p$
 - A bit fine-tuned but useful
- Easy to simulate with new HV1.0 MC (Mrenna, Skands, MJS)

Similar phenomenology to 1-flavor model

- □ Triplet of pseudoscalar v-pions that decay to SM (or are stable) ← heavy flavor
- Triplet of vector v-rho mesons that
 - decay to SM dilepton final states
- Other stable v-mesons decaying to SM
- Heavier unstable v-mesons decaying to other v-mesons

Dilepton Mass Distribution

If you could find enough events... in a sample with low Drell-Yan background...

...but what should your event selection criteria be?

Dilepton Mass Distribution

If you could find enough events... in a sample with low Drell-Yan background...

...but what should your event selection criteria be?

3) Strongly-coupled UV-Conformal Field Theory with many light flavors

- Dynamics of Conformal Field Theory (CFT) from 60s-70s
- Many ways to have CFTs in four dimensions
 - "Banks-Zaks" fixed points (70s)
 - N=4 SUSY Yang-Mills, N=1 finite models (80s)
 - Huge class of N=1 supersymmetric models (cf. Seiberg etc. 90s)
- Many papers use destabilized fixed points for BSM model building
 - UV fixed point, IR confinement
 - At least as far back as "Walking Technicolor" (1980s)
- There are three crucial quantities to track
 - □ a the gauge coupling
 - **b** the running of the gauge coupling
 - g the deviation of operator dimensions from naïve values

a vs. b vs. g

□a the gauge coupling

b the running of the gauge coupling

□g the deviation of operator

dimensions from naïve value

	Zero b (CFT)	Small b	Large b
Small aN (small g)	Banks-Zaks N=4 SUSY	Perturbed Banks-Zaks QCD UV , N=1 SUSY IR Technicolor UV Today's Model 1,2 UV	Won't last
Large aN (large g)	N=4 SUSY Generic Seiberg CFT N=1* UV Walking Technicolor UV	Perturbed Seiberg CFT	QCD IR, N=1 SUSY IR Technicolor IR Walking Technicolor IR Today's Model 1,2 IR Perturbed SCFT IR
Extreme aN (extreme g)	N=4 SUSY Randall-Sundrum bulk N=1* UV (PS bulk) Today's Model 3 UV	Deformed-RS bulk Duality cascade (KS bulk)	RS IR brane N=1* IR, KS IR Today's Model 3 IR

Models in green have an IR scale and could serve as a hidden valley sector

 Most interacting theories with light fields are "non-particle" theories QCD is a non-particle model [parton shower] Many Hidden Valley sectors are "non-particle" multiparticle production MJS & Zurek 06 				
 Many Hidden valley sectors are UV-CFT or UV-almost-CFT model same phenomenology – same models as "unparticles" with IR scale 				
Hidden Conformal Theories = "Unparticle" models Georgi 07 Hidden Walking Technicolor is an "unparticle" model in UV Hidden QCD is an almost-"unparticle" model in UV			C	
Large a N	N=4 SUSY		QCD IR, N=1 SUSY IR Technicolor IR Walking Technicolor IR Today's Model 1,2 IR Perturbed SCFT IR	
(large g)	Generic Seiberg CFT	Perturbed Seiberg CFT		
	N=1° UV Walking Technicolor UV			
Extreme aN	N=4 SUSY			
(extreme a)	Randall-Sundrum bulk	Deformed-RS bulk	RS IR brane	
	N=1* UV (PS bulk)	Duality cascade (KS bulk)	N=1* IR, KS IR Today's Model 3 IR	

Models in green have an IR scale and could serve as a hidden valley sector

3) Strongly coupled UV-Conformal Field Theory with many light flavors

- Many Flavors
 - Many light v-pions
 - Allow FCNCs here: all decay to SM
- I want to focus on aN >>1 (for both b = 0 and b small)
- Strong coupling
 - Enhances multiplicities,
 - Changes effects of parton shower
- What does $Z' \rightarrow v$ -hadrons look like now?
 - Weak coupling:
 - matrix element, parton shower almost as in QCD (until very near confinement scale)
 - Strong coupling:
 - matrix element altered strongly; parton shower is not separate process.

What happens in Conformal Field Theory

- Parton shower and deep inelastic scattering
 - Have similar collinear physics
 - Share the same splitting function at leading order
- Deep Inelastic Scattering in CFT (Kogut & Susskind 75)
 - Weak coupling: slow evolution like QCD
 - Hard partons and soft partons like QCD
 - Strong coupling: extremely rapid evolution (Polchinski & MJS 02)
 - Collinear physics driven to small x
 - Only soft partons remain.
- If this is true also for parton shower
 - Then any collinear partons split until soft-collinear
 - Soft physics dominates the final state
 - □ Soft physics forgets its initial direction → Spherical event
- I can't prove this (yet)
- If it is correct,
 - Many more v-hadrons with lower transverse momentum; huge soft multiplicity

Strong-Coupling Fixed Point (educated guesswork!) More v-hadrons Softer v-hadrons

Crude and uncontrolled simulation

•Fix a in HV Monte Carlo 0.5 at large value
•This increases collinear splitting
•Check that nothing awful happens
•Check answer is physically consistent with my expectation

Do not overinterpret! I am getting out the answer that I expect because I put it in!

Conclusions

- Theoretical exploration of possible LHC phenomenology is not complete
- The Hidden Valley scenario offers a vast array of unstudied phenomena
 - High-multiplicity final states
 - Several new neutral long-lived particles with a variety of final states
 - Effects on Higgs, SUSY, (and Technicolor, Little Higgs, Extra Dimensions....)
 - Many other realizations, which often
 - Give phenomenology distinct from today's examples
 - Are typically partly or completely unpredictable due to unknown strong dynamics
 - Theoretical Challenges
 - Prediction, Simulation, Background Reduction, Signal Extraction
 - Experimental Challenges
 - Triggering, Reconstruction, Event Storage, Event Selection, Analysis
- What other classes of phenomena have we missed?
- We should work quickly to ensure that we do not lose crucial data!
 - New methods are needed, designed and studied in realistic contexts
 - Good cross-talk between theorists and experimentalists essential