Horns for NuMI, NOvA and LBNE

- Horn 1 Assembly
- Horn 2 Assembly
Horn design for NuMI, NOvA and LBNE

NuMI/MINOS design:
- 400 kW beam; 1.87 seconds design cycle time, but ran 2 seconds
- 200 kA horn current, 2.3 milli-second half-sin-wave pulse width

NUMI/MINOS → NuMI/NOVA
- Repetition rate (0.5 Hz → 0.75 Hz): more Joule heating
- Beam power (400 kW → 700 kW): increased heating of outer conductor
- Target no longer inside horn, moderates inner conductor heating

Modifications:
- Reduce outer conductor thickness to compensate beam heating (1” → 5/8”)
- Add water cooling near strip-line connections
- Move strip-line flex section to larger radius to reduce beam heating
- Horn 1 “crosshair” changed from Aluminum to Beryllium
- Horn 2 moved, starts (10 m → 19.2 m) downstream of start of Horn 1

NuMI/NOVA → LBNE 700
- Same rate & beam power
- Target moves back into horn, increasing inner conductor heating

Reference design same as NOVA. Possible Modifications:
- Horn 2 starts (10 m → 6.6 m) downstream of start of Horn 1
- Will explore going to higher current
- Will investigate re-optimizing inner conductor water spray
- Will investigate other variations if funding becomes available
NUMI horn operation summary

61 million pulses over 7 years to May 1, 2012

<table>
<thead>
<tr>
<th>HORN 1</th>
<th>Start</th>
<th>End</th>
<th>Pulses (Million)</th>
<th>Failure mode</th>
<th>Modification for subsequent horns</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH1-01</td>
<td>3/2005</td>
<td>6/2008</td>
<td>24</td>
<td>Suction line broke near electrical insulator</td>
<td>Thicker steel at transition to insulator</td>
</tr>
<tr>
<td>PH1-02</td>
<td>6/2008</td>
<td></td>
<td>36</td>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HORN 2</th>
<th>Start</th>
<th>End</th>
<th>Pulses (Million)</th>
<th>Failure mode</th>
<th>Modification for subsequent horns</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH2-01</td>
<td>3/2005</td>
<td>12/2008</td>
<td>28</td>
<td>Strip-line fractured after high-strength steel washer broke due to hydrogen embrittlement</td>
<td>Use lower strength stainless steel washers</td>
</tr>
<tr>
<td>PH2-02</td>
<td>12/2008</td>
<td></td>
<td>32</td>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>
NuMI Horn Status

Next two slides re-iterate reasons why horns PH1-01 & PH2-01 were replaced in 2008

See NBI 2010 horn talk for previous repairable problems

Zero problems since then

However, did detect smell of rotten eggs when Horn 2 filter was replaced in May.

This is first time for such a report, and we do not have an explanation ... ??

Plan to continue to use Horn PH2-02 for the 700 kW NOVA run starting next year.

Horn 2 has been moved 9 m further downstream, as requested by NOVA, to obtain a neutrino spectrum better matched to their physics.

Horn PH1-02 will be replaced with PH1-04, built to take the increased beam power

PH1-04 is currently being pulsed on test stand

PH1-02, PH1-03 will be kept as emergency (400 kW) spares
Horn 1 failure 2008

water line failed at ceramic transition
(had repaired several such failures of different water lines)

Horn was hot enough (75 R/hr) that decided to swap horn rather than repair

Similar failure

Switched from commercial unit to home-built

Shrink fit 316L stainless steel on to AmAlOx 68 almina ceramic

Much thicker material

Kovar brazed to ceramic

Zero failures with this new style
Horn 2 failure 2008

high-strength steel washers broke due to nitric-acid induced hydrogen embrittlement,
unrestrained strip-line eventually cracked

(horn itself was OK)

No failures since switched to lower strength washers

In principle, can unbolt strip-line and replace it

(bolt pattern deliberately unobstructed)

But residual radiation 15 R/hr @ 1 ft

so would take quite a bit of remote setup and work
Argon gas purge through inside of horn –
 Prevent buildup of explosive mixture from dissociation of H2O by radiation
 Prevent oxidation of Nickel coating

Inner conductor Nickel coated
 Mitigate erosion by water spray of softer Aluminum
 - systematic error control against non-uniform current
 Also reduces probability of crack propagation from surface of Aluminum

_Nickel on outside of inner conductor is corroded by the nasty target pile air,
but believe inside is protected by Argon (don’t see nickel flakes in RAW system filters)
Measured on-beam-axis magnetic leakage field in PH1-02 remotely, in place in the target pile on 6/1/2011 with 3-axis probe

A previous target rested on horn for some time – damage?
Was a magnetic effect helping destroy targets?

Modeling of field-target interaction indicated bigger coupling to Al shell, even though the steel cooling tubes are slightly magnetic.

Not enough information to model exactly, but indicated we had more than order of magnitude safety factor, so did not replace horn

Maximum field 120 gauss
(20,000 gauss inside horn)

At tip, a few times expected from test stand, but still small
Horn conditioning - sparks

On last horn, had to gradually raise current - “condition” horn. Try to have pulses high enough to clean, but not high enough to do damage. Took about an hour.

On bolt-together upstream connection between inner and outer conductor, there is an outer lip that guides the two pieces together during assembly.

The silver-plated electrical connection is in-board of that.

Apparently, had to burn off rough (nickel flakes? machining roughness?) unevenness of lip.

Plan to do something to prevent this on next horn (Have Anodize lip on next horn).
Horn Strip-line modification for NOVA (700 kW) horn 1

Temperature with old NuMI design if used for NOVA

With improved cooling & flared out stripline geometry the max. temp. is reduced to < 100°C as desired
LBNE Reconfiguration – fall back to NuMI target & horns (for now)

Target end-on

Previous LBNE Horn 1 Design

Current LBNE Horn 1 Design

Horn 2 Design

Strip-lines moved to downstream end to maximize design carry-over from NuMI

Save on design, prototyping
Can re-use NuMI power supply

Re-gain flexibility of changing neutrino spectrum by moving target (systematics)

20% Higher current would be better - will study NuMI horn limit next year
Beam energy deposition in NUMI horn 1 for LBNE

Green – with previous reference target using encapsulated graphite discs.

Red – with Reference Design target inserted into horn
(target like MINOS LE but with Titanium cooling lines and Beryllium outer tube).

Blue – with NOVA style target upstream of horn.

Energy deposition in neck region of horn was becoming problematic with encapsulated target
- switching back to NUMI-style fin eases this
Beam compared to Joule heating

<table>
<thead>
<tr>
<th>Unit (kW)</th>
<th>Horn1</th>
<th>Horn2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IC</td>
<td>OC</td>
</tr>
<tr>
<td>Beam Heating Loads</td>
<td>10</td>
<td>12.5</td>
</tr>
<tr>
<td>Resistive Heating Loads</td>
<td>9.1</td>
<td></td>
</tr>
</tbody>
</table>

Beam Power to Target
- 708 kW

Pulse Parameters
- Horn peak current, I (kA): 200
- Half-sine current pulse length, t (ms): 2.1
- Cycle time, T (s): 1.33

Heating Loads on Horn 1 Inner Conductor

Resistive

Beam

Total
Max. Steady State Temp: 44.1 °C @ Horn1 Neck

Max. Transient Temp: 64.5 °C @ Horn1 Neck

Temp Jump / Pulse: 20.4 °C @ Horn1 Neck

Preliminary stress analysis also looks acceptable

Will make revisions to analysis after doing test cooling spray measurements next year