LBNO Project Overview

CERN-SPSC-2012-021
SPSC-EOI-007, 2012

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Expression of Interest

for a very long baseline neutrino oscillation experiment

(LBNO)

A. Stahl,1 C. Wiebusch,1 A. M. Guler,2 M. Kamiscioglou,2 R. Sever,7 A.U. Yilmazer,3 C. Gunes,3
D. Yilmaz,3 P. Del Amo Sanchez,4 D. Duchesneau,4 H. Pessard,4 E. Maroulakis,5 I. A.
Papazoglou,6 V. Berardi,6 F. Cafagna,6 C. G. Catanese,6 L. M. Magatelli,6
T. Strauss,7 M. Hierholzer,7 J. Kawada,7 C. Hsu,7 S. Haug,7 A. Jipa,8 I. Laug
A. Lai,9 R. Oldeman,10 M. Thomson,11 A. Blake,11 M. Prest,12 A. Auld,13 J. Elliot,13 J. Lumbard,13

On behalf of LAGUNA-LBNO, WP4
LAGUNA_LBNO / FP7 Design Study (2011-2014)

- New design study, extending that of LAGUNA, including the neutrino beams from CERN

- **LAGUNA**: search for optimal site in Europe for an underground ν detector
 - accelerator + other ν sources

- **LAGUNA-LBNO**: beam options for unique physics opportunities in Europe
 - Profit from experience gained with the CNGS operation
 - Incremental approach with competitive physics goals at each stage
 - Synergy with other ν-beam options
 - CN2FR : β-beam
 - CN2PY : Neutrino Factory

- Pyhäsalmi selected as top priority site that combines several optimal conditions --> CN2PY beam study

CN2PY (Pyhasalmi)
- Initial : beam from SPS (500kW - 750kW)
- Long term: LP-SPL + HPPS - 2MW

Synergy with a Neutrino Factory

CN2FR (Frejus)
- HP-SPL + accumulator ring (5 GeV - 4 MW)

Synergy with β-beam ($\gamma=100$)

CNGS - Umbria
- Beam from SPS (500kW)
- No near detector possibility
The LBNO Proposal – CN2PY LBL ν-beam

CERN Neutrinos 2 PYhasalmi beam

- **Phase 1**: proton beam extracted beam from SPS
 - 400 GeV, max 7.0×10^{13} protons every 6 sec,
 - ~ 750 kW nominal beam power, 10 μs pulse

- **Phase 2**: use the proton beam from a new HP-PS
 - 50(30,70) GeV, 1.33 Hz, 1.9×10^{14} ppp, 2 MW
 nominal beam power, 4 μs pulse
 - alternative option: upgradedSPS
 - CN2PY also compatible with a NF option

Beam parameters

- **400 GeV** protons from SPS (initial)
 - Survey info:
 - CERN (TCC2 target station –NA) 46°15'26.27"N, 6° 3'8.19"E
 - Innet Mine (Finland): 63°39'30.92"N, 26° 2'47.65"E
 - distance: 2296 km
 - dip angle: 10.4 deg, 181 mrad
 - Neutrino beam at Pyhäsalmi ($\theta_{max} = 30$ MeV/E_{ν}): 14 ± 34 Km for $E_{\nu} > 2\pm5$ GeV
Present state of mine

Present: The Pyhäsalmi mine (Inmet Mining Ltd., Canada)

- Produces Cu, Zn, and FeS₂
- The deepest mine in Europe
 - Depths down to 1400 m (4000 m.w.e.) possible
- The most efficient mine of its size and type
- Very modern infrastructure
 - Lift (of 21.5 tons of ore or 20 persons) down to 1400 metres takes ~3 minutes
 - Via 11-km long decline it takes ~40 minutes (by truck)
 - Good communication systems
- Operation time still 7–8 years with currently known ore reserves (presumably until 2018)
- Compact mine, small 'foot print'
 - Water pumping and other maintenance works not major issues
Pyhäsalmi mine

- Timo shaft
- Decline tunnel entrance
This pump alone takes all the water from 645 m to the surface

250 m long tunnel and a cavern at 1400m excavated for LAGUNA R&D

Cafeteria, meeting room and sauna at 1400 m below ground

Mobile phones work and internet available also at 1400 m
Layout of the LAGUNA-LBNO observatory at Pyhäsalmi (-1400m)

Available space for up to 2x50 kton LAr + 50 kton LSc
879’000 m³ excavation
Design to be finalised within LAGUNA-LBNO by ≈2014
Requirements - design challenges for the beam

- **Primary beam**
 - match of the beam parameters to the target for both beams, same final focusing elements

- **Secondary beam elements [400 ↔ ~30 GeV beam]**
 - focusing system design for both 1st and 2nd maximum [~4 GeV E_ν]
 - sufficient shielding to contain the produced radiation
 - including muons, water and soil activation (H3 and NA22 production)
 - beam elements: target and horn(s)
 - similar size to fit in the same infrastructure
 - same relative positions? or allow variations already from the design phase
 - remote handling possibilities ↔ flexibility in the design

- **Decay volume, dump, muon monitoring and near detector**
 - same length or intermediate dump?
 - dump length vs muon monitoring and near detector location

- Determine CP-violation and mass degeneracy by spectrum measurement and resolve degeneracies and so called “π-transit” effect
- arXiv:0908.3741.v1 for “Magic distance” A. Rubbia, LAGUNA

Work is progressing, highlights of present studies in the next slides....
CERN ν-beam to Pyhäsalmi - CN2PY Layout
Target station and ND in the North Area, use existing TT20 line and TI2 or LSS2 extraction
Phase-II: HP-PS using (LP)-SPL as injector
CERN ν-beam to Pyhäsalmi - CN2PY Layout

Target station and ND in the North Area, use existing TT20 line and TI2 or LSS2 extraction
Phase-II: HP-PS using (LP)-SPL as injector
All installations in CERN reserved territory
- CN2PY sharing or infrastructure with TCC2/NA
 - further optimization possible

Primary beam
Target cavern
Beam dump
Near detector (500m)
Near detector (800m)
CN2PY Layout - Beam extraction

Target station and ND in the North Area, use existing TT20 line and TI2 or LSS2 extraction
Phase-II: HP-PS using (LP)-SPL as injector

- 400 GeV beam extraction using existing kickers at LSS6 & LSS2 of SPS
- Feasibility test at SPS with positive results

B. Goddard et. al, LAGUNA-LBNO, WP4
Layout drawing

- Use the existing extraction from SPS (LLS2)
 - same extraction point from TT20 line to the new beams
 - **CN2PY**: 400 GeV beam, 10.4 deg down dip, **SBL2NA**: 100 GeV beam, 5 mrad upwards
The depth for the installations is the major concern -18% slope compared to 5.6% for CNGS.

Starting the beam from the SPS level adds ~50 m to the depth of the installations.

Here we gain as we start from the end of TT20 line that is ~11 m deep.

The target may be at the limit of the moraines/molasse layer.

Staying in the molasse layer has quite some advantages for the CE (stability) and radiation to environment (underground water activation issues) issues.

Note:
- The deepest shaft presently at CERN is ~140 m (LHC/P4)
- these are preliminary numbers
- The exact values will be determined once the study of the proton line is finalized.
CN2PY - Layout considerations

- CNGS Secondary Beam Layout

\[p + C \rightarrow (interactions) \rightarrow \pi^+, \ K^+ \rightarrow (decay) \rightarrow \mu^+ + \nu_\mu \]

- CN2PY Layout
CN2PY Target Cavern Layout

Target station building & services
(C&V, hot cell, cranes, power supplies, etc.)
(can be underground – no access during operation)

Movable concrete blocks

Movable steel plates

Air volume for structural support services

~3 m (if access needed)

~2 m Fe

Target horn reflector

DP collimator

Primary beam zone

Beam window

~5 m

<25 meters (CNGs is ~100 m)

10 m

He container (?)

TS and DP unique volume?

Decay pipe (DP)
target cavern layout

- single or step-wise solution?
- horizontal or vertical access?

talk of D. Wilcox
Design guidelines from our experience in CNGS and other ν-beam lines (T2K, NuMI)

Adopt the chase or rather “champignon” design for the target cavern

- for T2K H=\sim16m
- How much shielding we would need in the chase? RP !!!
- The logistics of the opening/closing in the cavern in the slope must be worked out!
Effect of relative distance between horn/reflectors

Horn configuration:
- $d_{TH} = 0$ cm
- $I_H = 220$ kA

Both peaks optimization

Effect of relative distance between target/horn

Reflector configuration:
- $d_{HR} = 10$ m
- $I_R = 220$ kA

With a fixed inner conductor shape

M. Calviani, P. Velten - CN2PY neutrino beam line design
2 October 2012
Higher ν_μ fluence for longer DP (~saturation for $r>1.5$ m)

The longer the DP, the larger the fraction of high-energy ν

DP length partly imposed by the μ fluence in the ND!

...And by costs!

Potential DP configuration

$\rho_D = 1.5$ m, $L_D \leq 300$ m

CNGS

$\rho_D = 1.2$ m, $L_D = 1100$ m
Present and future SPS performance
(in terms of beam power)

<table>
<thead>
<tr>
<th>Operation</th>
<th>SPS record</th>
<th>After LIU (2020)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LHC</td>
<td>CNGS</td>
</tr>
<tr>
<td>SPS beam energy</td>
<td>450</td>
<td>400</td>
</tr>
<tr>
<td>bunch spacing</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>bunch intensity/10^{11}</td>
<td>1.6</td>
<td>0.105</td>
</tr>
<tr>
<td>number of bunches</td>
<td>144</td>
<td>4200</td>
</tr>
<tr>
<td>SPS beam intensity/10^{13}</td>
<td>2.3</td>
<td>4.4</td>
</tr>
<tr>
<td>PS beam intensity/10^{13}</td>
<td>0.6</td>
<td>2.3</td>
</tr>
<tr>
<td>PS momentum</td>
<td>26</td>
<td>14</td>
</tr>
<tr>
<td>PS cycle length</td>
<td>3.6</td>
<td>1.2</td>
</tr>
<tr>
<td>SPS cycle length</td>
<td>21.6</td>
<td>6.0</td>
</tr>
<tr>
<td>SPS average current</td>
<td>0.17</td>
<td>1.17</td>
</tr>
<tr>
<td>SPS power</td>
<td>77</td>
<td>470</td>
</tr>
</tbody>
</table>

Feasibility including operational viability (especially in the PS) remains to be demonstrated
Present and future SPS performance (in terms of beam power)

<table>
<thead>
<tr>
<th></th>
<th>Operation</th>
<th>SPS record</th>
<th>After LIU (2020)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LHC</td>
<td>CNGS</td>
<td>LHC</td>
</tr>
<tr>
<td>SPS beam energy [GeV]</td>
<td>450</td>
<td>400</td>
<td>450</td>
</tr>
<tr>
<td>bunch spacing [ns]</td>
<td>50</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>bunch intensity/10^{11}</td>
<td>1.6</td>
<td>0.105</td>
<td>1.3</td>
</tr>
<tr>
<td>number of bunches</td>
<td>144</td>
<td>4200</td>
<td>288</td>
</tr>
<tr>
<td>SPS beam intensity/10^{13}</td>
<td>2.3</td>
<td>4.4</td>
<td>3.75</td>
</tr>
<tr>
<td>PS beam intensity/10^{13}</td>
<td>0.6</td>
<td>2.3</td>
<td>1.0</td>
</tr>
<tr>
<td>PS momentum [GeV/c]</td>
<td>26</td>
<td>14</td>
<td>26</td>
</tr>
<tr>
<td>PS cycle length [s]</td>
<td>3.6</td>
<td>1.2</td>
<td>3.6</td>
</tr>
<tr>
<td>SPS cycle length [s]</td>
<td>21.6</td>
<td>6.0</td>
<td>21.6</td>
</tr>
<tr>
<td>SPS average current [µA]</td>
<td>0.17</td>
<td>1.17</td>
<td>0.28</td>
</tr>
<tr>
<td>SPS power [kW]</td>
<td>77</td>
<td>470</td>
<td>125</td>
</tr>
</tbody>
</table>

Feasibility including operational viability (especially in the PS) remains to be demonstrated

R. Garoby, S. Gilardoni, E. Shaposhnikova,– LiU-LLBNO/CERN

![Graph showing integrated pot vs years of running](image)
Beam Intensity Upgrades - HP-PS

\[P = q_f r N_p E_k \]

<table>
<thead>
<tr>
<th>Parameters</th>
<th>PS2</th>
<th>HP-PSa</th>
<th>HP-PSb</th>
<th>HP-PSc</th>
<th>HP-PSd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumference [m]</td>
<td>1346.4</td>
<td>1256</td>
<td>1009</td>
<td>763</td>
<td>1256</td>
</tr>
<tr>
<td>Symmetry</td>
<td>2-fold</td>
<td>3 / 4-fold</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam Power [MW]</td>
<td>0.37</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Repetition rate [Hz]</td>
<td>0.42</td>
<td>2</td>
<td>2</td>
<td>2.6</td>
<td>1.3</td>
</tr>
<tr>
<td>Kinetic Energy @ inj./ext. [GeV]</td>
<td>4/50</td>
<td>4/50</td>
<td>4/40</td>
<td>4/30</td>
<td>4/50</td>
</tr>
<tr>
<td>Protons/pulse [10^{14}]</td>
<td>1.1</td>
<td>1.25</td>
<td>1.6</td>
<td>1.6</td>
<td>1.9</td>
</tr>
<tr>
<td>Dipole ramp rate [T/s]</td>
<td>1.4</td>
<td>6.1</td>
<td>6.0</td>
<td>7.5</td>
<td>4.0</td>
</tr>
<tr>
<td>Bending field @ inj/ext. [T]</td>
<td>0.17/1.7</td>
<td>0.17/1.7</td>
<td>0.21/1.7</td>
<td>0.27/1.7</td>
<td>0.17/1.7</td>
</tr>
<tr>
<td>Fractional beam loss [10^{-4}]</td>
<td>35.1</td>
<td>6.5</td>
<td>5.0</td>
<td>4.0</td>
<td>6.5</td>
</tr>
<tr>
<td>Space-charge tune-shift H/V</td>
<td>-0.13/-0.2</td>
<td>6.5</td>
<td>5.0</td>
<td>4.0</td>
<td>6.5</td>
</tr>
<tr>
<td>Lattice type</td>
<td>NMC arc, doublet LSS and DS</td>
<td>Resonant NMC arc, doublet LSS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. beta H/V [m]</td>
<td></td>
<td>60/60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. dispersion [m]</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Getting 2MW of beam power is not straight-forward
- ramp rate, space-charge, losses, acceptance, space(circumference), cost!
Design guidelines

- Design adapted from PS2 studies
- 3-4 fold symmetric ring to accommodate in separate LSS injection/extraction collimation and RF
- NMC lattice necessary to avoid transition and reduce losses
- Use resonant NMC cells to increase filling factor (no DS)
- Doubles LSS leave space for BT equipment, collimation and RF
- Layout considerations with existing machines and constraints

<table>
<thead>
<tr>
<th>Parameters</th>
<th>SF HP-PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumference [m]</td>
<td>1093</td>
</tr>
<tr>
<td>Symmetry</td>
<td>3 / 4-fold</td>
</tr>
<tr>
<td>Beam Power [MW]</td>
<td>2.0</td>
</tr>
<tr>
<td>Repetition rate [Hz]</td>
<td>1.3</td>
</tr>
<tr>
<td>Kinetic Energy @ inj./ext. [GeV]</td>
<td>4/50</td>
</tr>
<tr>
<td>Protons/pulse [10^{14}]</td>
<td>2.5</td>
</tr>
<tr>
<td>Dipole ramp rate [T/s]</td>
<td>3.1</td>
</tr>
<tr>
<td>Bending field @ inj./ext. [T]</td>
<td>0.21/2.1</td>
</tr>
<tr>
<td>Gamma transition</td>
<td>46.5i</td>
</tr>
<tr>
<td>Lattice type</td>
<td>Resonant NMC arc, doublet LSS</td>
</tr>
<tr>
<td>Norm. emit. H/V [\mu m]</td>
<td>TBD</td>
</tr>
<tr>
<td>Max. beta H/V [m]</td>
<td>44.6/53.7</td>
</tr>
<tr>
<td>Max. dispersion [m]</td>
<td>4.3</td>
</tr>
</tbody>
</table>
CN2PY – Upgrade option HP-PS

Design guidelines

- Design adapted from PS2 studies
- 3–4 fold symmetric ring to accommodate in separate LSS injection/extraction collimation and RF
- NMC lattice necessary to avoid transition and reduce losses
- Use resonant NMC cells to increase filling factor (no DS)
- Doubles LSS leave space for BT equipment, collimation and RF
- Layout considerations with existing machines and constraints
Summary

- After CNGS may be is now time to go...
Summary

‣ After CNGS may be is now time to go...

from South ...
After CNGS may be is now time to go... to North?

from South...