

Horn design for the CERN to Fréjus neutrino Super Beam

Nikolas Vassilopoulos IPHC/CNRS

Horn evolution

evolution of the horn shape after many studies:

details in WP2 notes @ http://www.euronu.org/

- triangle shape (van der Meer) with target inside the horn: in general best configuration for low energy beam
- triangle with target integrated to the inner conductor: very good physics results but high energy deposition and stresses on the conductors
- forward-closed shape with target integrated to the inner conductor: best physics results, best rejection of wrong sign mesons but high energy deposition and stresses
- forward-closed shape with no-integrated target: best compromise between physics and reliability
- ➤ 4-horn/target system to accommodate the MW power scale

Horn shape and SuperBeam geometrical Optimization 1

- as decay tunnel dimensions, etc...
- parameters allowed to vary independently
- \triangleright minimize the δ_{cp} -averaged 99% CL sensitivity limit on $\sin^2 2\theta_{13}$

SPL Horn Studies @ NBI2012, CERN

Horn Shape and SuperBeam geometrical Optimization II

Allow parameters to vary independently Limit value

to vary independenti		
Limit	value	
L_{max}	250 cm	
R_{max}	80 cm	
R_{min}	1.2 cm	
Parameter	Interval	
L_1	$[50, L_{max}]$ cm	
L_2, L_3, L_4	$[1, L_{max}]$ cm	
L_5	[1, 15] cm	
R, R_1, R_2	$[R_{min},R_{max}]$	
R_0	$[R_{min}, 4]$ cm	
z_{tar}	[-30, 0] cm	
L_{tun}	[35, 45] m	
r_{tun}	[1.8, 2.2] m	
Parameter	Value	
L_{tar}	0.78 m	
r_{tar}	1.5 cm	
i	300 kA	
s	3 mm	
r	5.08 cm	

Parameters	value [mm]	
L_1, L_2, L_3, L_4, L_5	589, 468, 603, 475, 10.8	
t_1, t_2, t_3, t_4	3, 3, 3, 3	
r_1, r_2	108	
r_3	50.8	
R^{tg}	12	
L^{tg}	780	
z^{tg}	68	
R_2, R_3	191, 359	
R_1 combined	12	
R ₁ separate	30	
•		

fix & restrict parameters then reiterate for best horn parameters & SuperBeam geometry

Horn Stress Studies

- horn structure
 - ✓ Al 6061 T6 alloy good trade off between mechanical strength, resistance to corrosion, electrical conductivity and cost
 - ✓ horn thickness as small as possible: best physics, limit energy deposition from secondary particles but thick enough to sustain dynamic stress
- horn stress and deformation
 - ✓ static mechanical model, thermal dilatation
 - ✓ magnetic pressure pulse, dynamic displacement
 - ✓ COMSOL, ANSYS software
- cooling
 - ✓ water jets

<u>Packed-bed</u> <u>target</u>

Titanium alloy cannister containing packed bed of titanium or beryllium spheres

Cannister perforated with elipitical

holes graded in size along length

- ➤ Large surface area for heat transfer
- Coolant able to access areas with highest energy deposition
- Minimal stresses
- Potential heat removal rates at the hundreds of kW level
- Pressurised cooling gas required at high power levels

Energy Deposition from secondary particles @1.3 MW

Stress Analysis

- Thermo-mechanical stresses:
 - ✓ secondary particles energy deposition and joule losses
 - ✓ T=60ms, (worst scenario, 1horn failed), τ_{0l} =100µs, electrical model: I_0 = 350kA, f=5kHz, I_{rms} =10.1kA

stress minimized when horn has uniform temperature

- G. Gaudiot, B. Lepers,
- F. Osswald, V. Zeter/IPHC,
- P. Cupial, M. Kozien, L. Lacny,
- B. Skoczen et al. /Cracow Univ. of Tech.

Stress due to thermal dilatation and magnetic pressure

- displacements and stress plots just
- before and on the peak
 - ✓ stress on the corner and convex region
 - ✓ stress on the upstream inner due to pulse
 - ✓ uniform temperature minimizes stress
- modal analysis, eigenfrequenciesf = {63.3, 63.7, 88.3, 138.1, 138.2, 144.2} Hz

peak magnetic field each T=80ms (4-horns operation)

Horn cooling

cooling system

- planar and/or elliptical water jets
- ➤ 30 jets/horn, 5 systems of 6-jets longitudinally distributed every 60°
- flow rate between 60-120l/min, h cooling coefficient 1-7 kW/(m²K)
- longitudinal repartition of the jets follows the energy density deposition
- h_{corner} , h_{horn} , h_{inner} , h_{convex} = {3.8, 1, 6.5, 0.1} kW/(m²K) for T_{Al-max} = 60 °C

12/13

horn lifetime

Horn response under pulse magnetic forces

SINGLE PULSE with static thermal stress SVM=102.5 MPa and maximal magnetic stress SMAX=41 MPa — estimated life time

S-N curve -	Life time [s]		
probability	Rayleigh	Dirlik	Benasciutti-Tovo
95%	2.7076e+007	8.6147e+007	7.9627e+007
50%	6.0195e+006	1.8589e+007	1.7026e+007
5%	2.1816e+006	6.5918e+006	6.0132e+006

M.S.Kozień

Fourth EUROnu Annual Meeting, June 12-15, 2012, APC, Paris

Target station, service galleries

Design includes:

- Proton Driver line
- Experimental Hall: 4 MW Target Station, Decay Tunnel, Beam Dump
- Maintenance Room
- Power supply, Cooling system, Air-Ventilation system
- Waste Area

Radiation Studies for horn/target gallery

Four-horn support

<u>conclusions</u>

- ➤ Al 6061 T6 alloy for radiation, reliability and cost
- convex shape defined for optimum physics

- low stress on inner conductor when uniform cooling is applied < 30 MPa</p>
- horn lifetime > 10⁸ cycles (1 year) highly conservative
- support designed
- power supply & cooling R&D needed

Thank you

4-horn system for power accommodation

Parameters	value [mm]		
L_1, L_2, L_3, L_4, L_5	589, 468, 603, 475, 10.8		
t_1,t_2,t_3,t_4	3, 10, 3, 10		
r_1, r_2	108		
r_3	50.8		
R^{tg}	12		
L^{tg}	780		
z^{tg}	68		
R_2, R_3, R_4	191, 359, 272		
R_1 non integrated	30		

 ${\bf Table\ 1:\ Horn\ geometric\ parameters.}$

Parameters	Range	Reference value
Beam Power $P_{beam}[MW]$	-	4
Energy per pulse[kJ]	_	80
Kinetic energy of protons[GeV]		4.5
Number of pulse in 1s		50
Number of protons per pulse		1.11×10^{14}
Number of bunch per pulse		6
Number of protons per bunch		1.85×10^{13}
bunch duration[ns]		120
Energy per bunch[kJ]		13.33
Power for each bunch[GW]		111
repetition rate per horn[Hz]	-	12.5(16.6)
Power per horn[MW]	11.3	1.4
Peak Current I_0 [kA]	300 350	350
Beam width σ [mm]	-	4
Current frequency per horn [Hz]	-	12.5 (16.6)

Table 2: Beam and horn parameters.

beam window

Matt Rooney/RAL

Power Supply

P. Poussot, J. Wurtz/IPHC

Figure 161: Evolution of the dose equivalent rate for several configuration of iron and concrete.

