LEP Beam-Beam Limit

R. Assmann LEP3 Day, 18.6.2012, CERN

Introduction

- The beam-beam limit in e+e- storage rings is a difficult subject, studied by many colleagues over the years. No complete overview in 10 min!
- Several limits can be defined and exist.
- Here: Experience at LEP.
- <u>Empirical stochastic model for the achievable</u> <u>beam-beam parameter</u> versus energy and time.
- Basically: Beam-beam interaction blows up vertical emittance which in turn limits achievable beam-beam parameter and luminosity.

Reference

THE BEAM-BEAM INTERACTION IN THE PRESENCE OF STRONG RADIATION DAMPING

R. Assmann and K. Cornelis, CERN, Geneva, Switzerland

EPAC 2000

REFERENCES

- S. Myers, "Simulation of the Beam-Beam Effect for e⁺e⁻ Storage Rings". Nucl. Instr. Meth. 211 (1983) p. 263.
- [2] Š. Myers, "Review of Beam-Beam Simulations". In Santa Margherita Di Pula 1985, Proc. Nonlinear Dynamics Aspects Of Part. Acc., p. 176-237.
- [3] E. Keil, "Beam-Beam Simulations for LEP at 87 GeV". CERN-SL-96-08-AP.
- [4] H. Burkhardt et al, "The Effect of the Beam-Beam Interaction on the Performance of LEP". CERN-SL-92-15.
- [5] H. Burkhardt, "Energy Dependence of Beam-Beam Interactions in LEP". Proc. PAC97.
- [6] A. Chao, "Beam-Beam Instability", in Phys. of High Energy Part. Acc., AIP Conf. Proc. 127(1983).

- [7] D. Brandt et al, "Is LEP Beam-Beam Limited?". Proc. PAC99.
- [8] E. Keil and R. Talman, "Scaling of Luminosity Data between e+e- Storage Rings". Part. Acc. 14(1983) p.109.
- [9] S. Peggs. Talk at the Workshop on Beam-Beam Effects (LHC99), CERN 1999.
- [10] R. Assmann et al, "Luminosity and Beam Measurements Used for Performance Optimisation in the LEP Collider". These proceedings.
- [11] A. Verdier. "Beam-Beam Effect in LEP, an Alternative Point of View". Beam Physics Note 28. CERN.

LEP Measurements

Table 1: Overview of achieved beam energies, ξ_y , bunch currents, and transverse damping times in LEP.

Year	Beam	Maxi-	Damping	Bunch
	energy	mum	time	current
	[GeV]	ξv	[turns]	[µA]
1994	45.6	0.045	721	320
1995	65.0	0.050	249	400
1996	86.0	0.040	107	525
1997	91.5	0.055	89	650
1998	94.5	0.075	81	750
1999	98.0	0.083	73	780
2000^{*}	102.7	0.055	63	550

Theory I

Vertical beam-beam parameter

$$\xi_{y} = \frac{2r_{e}em_{e}c^{2}\cdot\beta_{y}^{*}}{n_{b}\cdot i\cdot E}\cdot L$$

Parametric Model

simple stochastic theory of the beam-beam interaction to derive the relationship between the vertical beam-beam parameter and bunch current i

A is a machine and optics dependent number times the zero current (unperturbed) vertical emittance (if the horizontal beambeam blow-up is small).

<u>B gives the</u> <u>inverse</u> <u>asymptotic</u> <u>vertical beam-</u> <u>beam</u> parameter

Bunch current mA

Figure 3: Three data sets at 94.5 GeV are fitted with the constraint of equal asymptotic beam-beam parameter ξ_v

Unperturbed Vertical Emittance

- Means: Vertical emittance unperturbed by beam-beam.
- For <u>zero vertical orbit and therefore zero</u> vertical dispersion, it is assumed to approach <u>zero</u> (of course it would then be limited by other effects).
- Here it is assumed that the driving blow-up will be generated by beam-beam, damped by radiation damping.

Beam-Beam Limits Luminosity (Blowing up the Unperturbed Vertical Emittance)

Vertical emittance [nm]

Figure 5: Predicted luminosity versus unperturbed vertical emittance (emittance at zero beam intensity). The calculation assumes a beam energy of 98 GeV and a bunch current of 750 μ A. It is based on the fitted beam-beam limit of 0.115 for 98 GeV (Figure 4, top).

Conclusion

- Measured max. vertical beam-beam parameter:
 0.083
- Fitted, achievable vertical beam-beam parameter at ~100GeV:

0.11 - 0.12

• Scaling with damping decrement:

$$\xi_y^\infty \propto \lambda_d^{\sim 0.4}$$