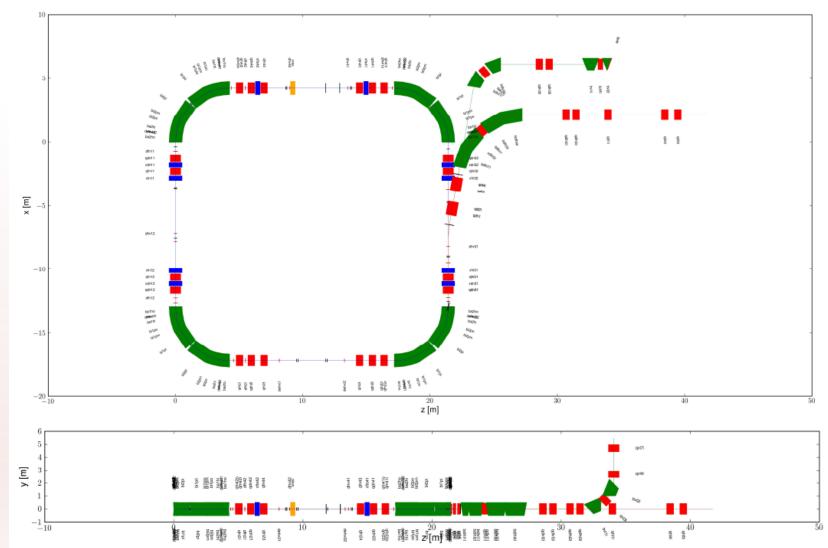


Comments on a biomedical beamline facility at CERN

Ken Peach
CERN, 25th June 2012



PTCRi

- What beamline
- What beams
- What facilities
- What experiments
- Summary

What Beamline

Daniel Abler

What beams

Ions	Priority Rating /5	Why	Anticipated Issues
Protons	5	Clinical	
(molecular ion) H ₂	2	Correlated particle experiments Experiments -Spatial distribution Variation in response	
Helium 2 ³	5	Possibly clinical	
Helium 24	4	Stable and possibly clinically relevant	Deuterium contamination
D	4 (if clean), 0 (if not)	<u>Radiobiologically</u> interesting, not clinically useful	Neutron contamination Cost
Li ⁶ 3	4	RBE greater than P Fragmentation tail shorter, less dose deposited past the distal edge	Specialised ion source
B s ¹⁰	2	Potentially clinical Fragmentations more than Li, better than C	Specialised ion source
C e ¹²	5	Clinical	
N 7 ¹⁴	3	Radiobiological Studies	
0 s ¹⁶	4	Possibly clinically relevant Radiobiological Studies	
Ne 10 ²⁰	3-4	Comparison to present radiobiological studies	
(non inclusive, anx available) Ne-Fe	1	To analyse radiobiological trends across the ions	
Ç 3 20 ⁴⁰	1	Intermediate Biologically important trace element	Specialised ion source
Fe 26 ⁵⁶	3	Radiobiological interpolation	Specialised ion source

What Facilities

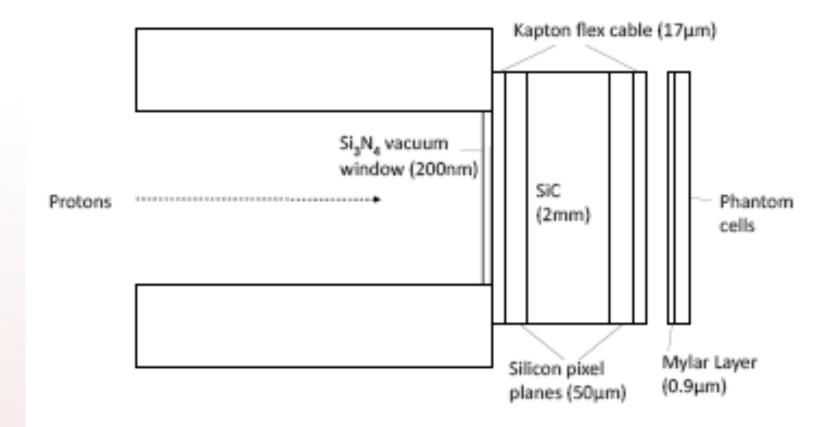
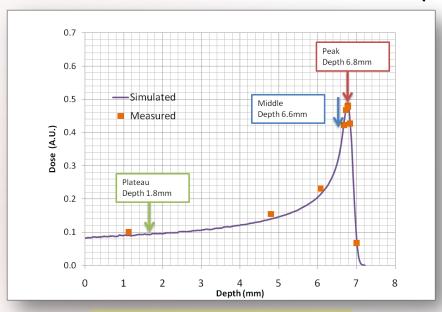
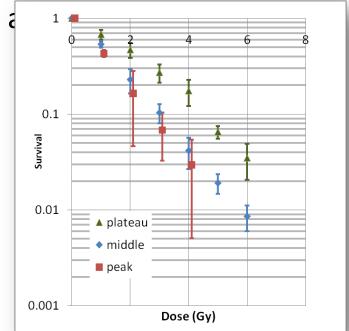


Figure 10: Diagram of Endstation Setup. Apparatus has cylindrical symmetry.

C. Timlin, D. Warren, D. Abler and L. Caldwell

What facilities - 2


- Need the appropriate biology infrastructure
 - At the end station
 - Multiple samples
 - Remote manipulation and monitoring
 - Environmental control
 - Nearby
 - (sample cultivation, preparation and analysis)
 - In vivo?
 - Perhaps eventually



What experiments

- Two modes
 - Responsive to proposals
 - Dedicated campaign on key biomedical parameters

Difference cell lines (normal & a

Ai Nagano (PTCRi) – private communication

Summary

- Opportunity to develop a dedicated facility
 - Flexible beams (ions and energies)
 - Appropriate facilities
 - Sustained programme
 - Understand enough to move confidently from iso-dose to iso-effect
 - Also understand the dynamics of fractionation
 - For different cell types and ion speciles