Portuguese interest in a biomedical facility at CERN:

Radiobiology/radiophysiology studies in loco and complemented at Coimbra 18-MeV cyclotron proton beam

Paulo Crespo (crespo@lip.pt)

on behalf of

LIP, University of Lisbon, Universidade Nova de Lisboa, University of Coimbra, Instituto Superior Técnico, et al.

BRAINSTORMING FOR A BIOMEDICAL FACILITY AT CERN

CERN, June 25, 2012

Outline

Lisbo

Collino

Animal RPCPE

Proton radiophysio ogy/biology

Conclusion

Outline

- 1 Lisbon
 - Universidade Nova
 - LIP and University of Lisbon
- 2 Coimbra
 - ICNAS (University of Coimbra)
 - LIP and University of Coimbra
- 3 Animal RPC-PET
 - Motivation: beyond preclinical
 - Concept implementation
 - Experimental results
- Proton radiophysiology/biology
 - Results in humans
 - Work @ LIP/UC
- 5 Conclusion

Universidade Nova

1. Lisbon – Universidade Nova

Expertise in radiobiology and gene expression analysis:

CIGMH

Department of Genetics Faculty of Medical Sciences Universidade Nova de Lisboa

Expertise and Know-how

Experience: Radiation biology, genotoxicology of radiation, Boron neutron capture

Cytogenetic assays Chromossomal aberrations

Micronuclei

Cell viability assays MTS, MTT, clonogenic assays

Gene expression analysis Real time QPCR

Spectrofluorimetry, Fluorescence Apoptosis assays

microscopy

 YH2AX assay Fluorescence microscopy

1. Lisbon – LIP and Universidade de Lisboa

Expertise in Monte Carlo, dosimetry, and radioprotection:

LIP-Lisbon Expertise fields

Plastic scintillators

Low energy dosimetry/ radioprotection and shielding Fluka and GEANT4 simulation

Alpha particle dosimetry
Fast MC for alpha particle transport

Scan path optimization for active beam delivery in charged particle therapy.

Outline

Lisbon

LIP and University of Lisbon

Coimbra

Animal

Proton radiophysio

Conclusion

2. Coimbra – ICNAS: hosts 18-MeV proton cyclotron from University of Coimbra

Expertise in cyclotron physics, radiobiology, & radiophysiology:

INSTITUTO DE CIÊNCIAS NUCLEARES APLICADAS À SAÚDE

ICNAS Expertise

- Cyclotron (18MeV proton / 9MeV deuteron) with beam extraction port
- Full GMP radiochemistry lab (11C, 18F, etc)
- Cell and tissue culture (CO2 incubator, LAF workstation, etc)
- Simple animal model: C. Elegans (we use for radiobiology studies)
- Complex animal models (rats and mice):
 - Tumor models (xenografts) for osteosarcoma, breast, etc
 - short (1-3 days) studies can be done.
 - Areas for longer (longitudinal) studies are being implemented
- Animal imaging:
 - MicroPET, CT, XR, optical (bioluminescence and fluorescence)
 - 9.4 T animal MRI being implemented

ICNAS

Outline

ICNAS (University of

Coimbra)

LIP and University of

Animal

Proton radiophysiol

Conclusion

Outline

Lisbor

Coimbra
ICNAS (University of Coimbra)
LIP and University of Coimbra

Animal RPCPE

Proton radiophysio ogy/biology

Conclusio

2. Coimbra – LIP and University of Coimbra

Expertise in human and small animal nuclear imaging (Monte Carlo, detector construction, image reconstruction):

- Human, whole-body, single-bed resistive plate chamber PET (RPC-PET) with demonstrated coincidence time resolution of 300 ps FWHM: for diagnostic, under construction
- Small-animal RPC-PET with demonstrated submillimetric spatial resolution (slides <u>7-9</u>): for radiopharmacy and e.g. particle radiophysiology, under final construction
- Real-time treatment dose verification (RTmon) for external X-ray beam radiotherapy with (1) demonstrated submillimetric positioning accuracy, and (2) unprecedented correlation with dose effectively delivered: for assisting X-ray-beam therapy, small prototype under construction

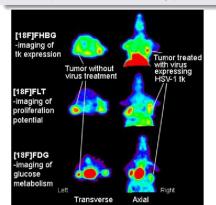
Outline

Lisbo

Coimbr

Animal RPCPET

Motivation: beyond preclinical Concept implementation Experimental result


Proton radiophysiol ogy/biology

Conclusion

3. Animal RPC-PET (aRPCPET)

Motivation: the demonstrated submillimetric resolution of aRPCPET (slide $\underline{9}$) potentiates preclinical studies beyond those offered today

 aPET is supported mainly by pharmaceutical and fundamental biomedical research, but: particle therapy may also profit strongly (as it already does).

- From Athinoula Martinos
 Center for Biomedical
 Imaging
- FHBG = fluoro-hydroxymetil-butil-guanina.
- HSV-1 = Herpes simplex virus-1.
- FDG = fluoro-desoxy-glucose.
- FLT = desoxyfluorotimidina.

3. Animal RPC-PET

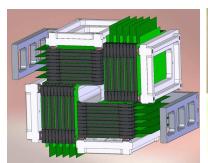
Concept (under final implementation)

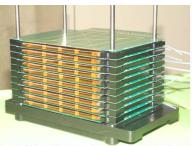
 Innovative animal RPC-PET system proposed at LIP (E.g. Blanco et al. TNS 2006).

Outline

Lisbon

Coimbi


Animal


Motivation: beyon preclinical

Concept implementation Experimental results

Proton radiophysiology/biology

0 - - - 1. - - 1

Full head, now being commissioned

0.46.00

isbon

Coimbr

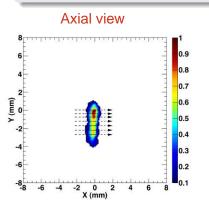
COIIIIDI

RPCPET

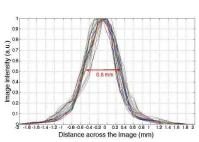
Motivation: bey

Motivation: beyor preclinical Concept implementation

Experimental results


Proton radiophysiol ogy/biology

Conclusi


3. Animal RPC-PET

Submillimetric (not-yet-optimized) experimental results:

 E.g. radioactive source was made in house, is nonuniform, and has a suboptimal, cylindrical-like disk shape (Martins et al. 2012 IEEE MIC submitted).

Line profiles across axial view: FWHM < 1 mm

Portuguese interest in a biomedical facility at CERN complemented with Complex

complemented with Coimbra 18-MeV proton beams

Outline

_isbor

Colmbr

Animal RPCPF

Proton radiophysic

Results in humans

Conclusion

4. Proton radiophysiology/biology

Medulloblastoma: range deviations by T1-weighted MRI

- Observation: (1) fatty conversion in the vertebral bone marrow; and (2) edema in the posterior part of the vertebral bodies (Stevens et al AJR 1990).
- Unknowns: (1) higher RBE at end of proton range?
 - (2) Bone marrow edema and vascular congestion?
 - (3) Other? → Radiophysiology @ CERN/Coimbra

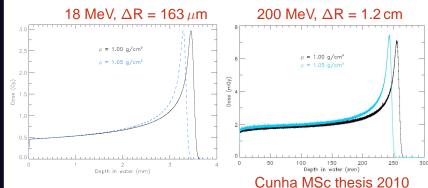
IRI-detected underrange

From Gensheimer et JROBP 2010

3cm

0123

0 1 2 3cm


BRAINSTORMING FOR A BIOMEDICAL FACILITY AT CERN

Work @ LIP/UC

4. Proton radiophysiology/biology

Ongoing work at LIP/University of Coimbra (ICNAS)

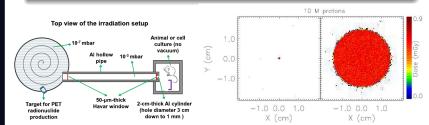
- Design and construction of a proton irradiation setup for proton radiobiology/radiophysiology (et al.) (Ghithan PhD ongoing).
- Useful for particle RT community, especially if results may be crosschecked elsewhere (LEIR@CERN?)

O. 41:00

Lishor

Coimbi

Animal RPCPE


radiophysiology/biology Results in humans Work @ LIP/UC

Conclusion

4. Proton radiophysiology/biology

Ongoing work at LIP/University of Coimbra (ICNAS)

- Design and construction of a proton irradiation setup for proton radiobiology/radiophysiology (et al.)
 (Ghithan et al 2012 IEEE NSS submitted).
 - Monte Carlo (Geant4) code development (Pinto MSc thesis 2010, Ghithan PhD ongoing) and validation (Ghithan PhD ongoing)

Outline

Lisbo

Coimbi

Animal RPCPE

Proton radiophysic ogy/biology

Conclusion

5. Conclusions

Biomedical facility at LEIR@CERN

- Highly-desired by countries without a particle therapy center and willing to contribute to particle radiobiology/radiophysiology studies, as demonstrated with several examples throughout this talk
- The scientific and technological outputs of these studies are in turn highly-desired by the particle therapy community for improving pertinent radiobiological/radiophysiological knowledge, models, and most importantly clinical outcomes
- Biomedical facility at LEIR@CERN seems to be a win-win scenario for all parties involved

Outline

Lisbo

00....

Animal RPCPE

radiophysic ogy/biology

Conclusion

Thank you for your attention