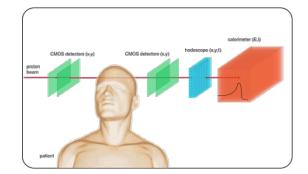
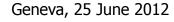
Needs for ion beams The ion-therapy research program in Lyon

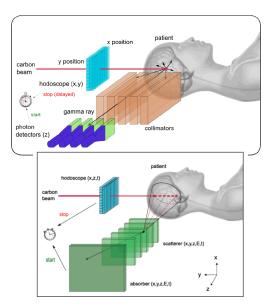
Denis Dauvergne Institut de Physique Nucléaire de Lyon CNRS/IN2P3 Université Lyon 1 PRRH ETOILE – GDR MI2B

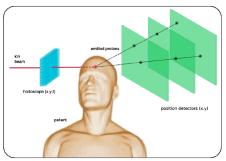
P**R**H

1


Geneva, 25 June 2012


Frameworks


- Rhône Alpes Program for ion-therapy research : PRRH
- GDR MI2B (CNRS) (IMN5, IMN9)
- France HADRON (WP3, WP4), Lyon node
- LabEX PRIMES (WP1, WP3)
- Ongoing projects:
 - FP7 ENVISION, ENTERVISION
 - ANR Gamhadron
 - INCA QAPIVI, Protom


New instruments and methods for in beam control

- In-beam beta+ decay (Envision WP2)
- Prompt-gamma imaging (ENVISION WP3)
 - Collimated
 - Compton Camera
- Secondary protons (ENVISION WP3)
 - Interaction vertex imaging
- Proton radiography

Radiobiology

- Cellular response to carbon and proton irradiations :
 - Quantification of radiobiological efficiency
 - DNA damage and repair
 - Cell death signaling
 - Radioresistance mechanisms
 - Analysis and prediction of radiobiological data
- Existing in Lyon
 - Radiograaff: 3 MeV protons (implemented 2012)

Typical needs for beams

- In beam imaging: Detector developments and tests
 - Carbon and proton ions
 - energies relevant for ion therapy (> 60 MeV/u)
 (100 hours/year)

Allow detector and electronics tuning: (a few hours at once may be useless)

- Radiobiology: cell irradiation
 - Carbon ion beams:
 - Low enegy : 10-12 MeV/u
 - Medium energy : 50-75 MeV/u

(60–180 hours/year) (60–180 hours/year)

Accelerator stability and planning reliability are strong issues