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TERAOGs administration is in Novar a,
carry out their research on the CERN Meyrin site (building 182).



Cyclinac Group

The hadrontherapy community requires accelerating structures
that are compact, have a high reliabilty, and appropriate beam
parameters:



Cyclinac Group

The hadrontherapy community requires accelerating structures
that are compact, have a high reliabilty, and appropriate beam
parameters:

- active energy modulation

- high repetition rate

Tumour volume slice

3D spot scanning beam delivery with multipainting



Cyclinac: cyclotron + high freqg linac

Cell Coupled Linac
Standingwave structure
RF frequencys.7 GHz
2.5ms-long pulse aB00 Hz

CABOTO=

CArbon BOoster for Therapy in Oncology




TULIP: TUrning Llnac for Protontherapy

C-band linac

Section 1 C-band linac

Section 2
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Test Cavities

These structures operate at high -gradient and have similar high
requirements on reliability as CLIC.

Such structures must be tested...



Test Cavities

These structures operate at high -gradient and have similar high
requirements on reliability as CLIC.

Such structures must be tested...

Sband 3 GHz

Gband 5.7 GHz

A Three5.7 GHz TERA SinglellCavities
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Why do we need Quality Assurance?

The use of protons or ions as a radiotheraputic beam  requires a higher
precision in the correct delivery of the prescibed treatment plan.
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Why do we need Quality Assurance?

The use of protons or ions as a radiotheraputic beam

precision in the correct delivery of the prescibed treatment plan.
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Uncertainties may arise from:

Dose delivery uncertainties

A Delivery system
A Beam modelling
A CT units and range

Spatial uncertainties

A Patient positioning

A Target delineation

A Organ motion

A Patient anatomy, motion,
repositioning

requires a higher
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The AQUA Overview
AQUA

ADVANCED QUALITY ASSURANCE

Heraction Vertex Imaging
ng Tomography

ar Scatteri

oton Range Radiography

In-beam PET with Crystals /m" L Advanced
In-beam PET with Resistive Plate-€lhambers ‘ "*‘ l‘i:::.::::w
\*/
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Proton Range Radiography

Principle

therapy
@ Energy loss of each proton
is proportional to the | = Eq
integrated relative electron radiography

density of the target




Proton Range Radiography

Principle —

@ Energy loss of each proton
is proportional to the | = Eq g
integrated relative electron radiography

density of the target

Implementation

@ Use a 0di agnomnoi ¢ G
energetic beam of higher
energy and lower intensity

® Measure each proto
position and residual range

@ Build the 2D integrated
density image: a proton
radiograph GEMI1 GEM2 Scintillators stack
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Proton Range Radiography

Purposes of 2D PRR

& Optimal patient positioning (low dose radiography)

& Treatment planning verification
& First step towards Proton CT

Realization - :
N. Depauw and J. Seco, Phys. Med. Biol. 56 (2011) 2407-2421

& First Proton Range Radiography prototype o PRR10 (2010)




U. Amaldi et al,

Nucl. Instr. and Meth.

A629(2011)337

PRR10 Beam Tests
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PRR10 Beam Tests
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For 1Ix1 mn¥ pixels and an image size of 30x30 cm? (10°pixels) D107 proton
tracks to be recorded (possible in 10 seconds with 1 MHz readout rate)
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PRR10 Beam Tests

PSI CNAO
RADIOGRAPHY
255
240
sl |
o Lung (.20)
ol
e L Trabecular
= Gl | bone (1.16)
100~ A
-~ O~ o Breast
T S ™M
S8 . | 50/50 (.99)
TERQX o
cE - 5 .
<8< A -
. (.O 0 20 40 60 80 100 120 140 160 180 200 220 24¢
D2 @man : .

o1 v el sl

For 1Ix1 mn¥ pixels and an image size of 30x30 cm? (10°pixels) D107 proton
tracks to be recorded (possible in 10 seconds with 1 MHz readout rate)

Present R&D

@ Larger area (30x30 cm?)
& 48 scintillators (~ 15 cm tissue equivalent )

@ Faster readout electronics ~ 1 MHz .



PRR10 Beam Tests
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For 1Ix1 mn¥ pixels and an image size of 30x30 cm? (10°pixels) D107 proton
tracks to be recorded (possible in 10 seconds with 1 MHz readout rate)

Present R&D

@ Larger area (30x30 cm?)
& 48 scintillators (~ 15 cm tissue equivalent )
& Faster readout electronics ~ 1 MHz

» PRR30in construction
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Under construction: PRR30

Range Finder

& 48 Plastic scintillators 3mm each
(15cm water equ)

& WLS fiber to SiPM

@ ADC readout triggered by 2
scintillators in coincidence
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Under construction: PRR30

Range Finder

& 48 Plastic scintillators 3mm each
(15cm water equ)

& WLS fiber to SiPM

@ ADC readout triggered by 2
scintillators in coincidence

30MeV to 190MeV Residual Energy

Tracker

& Two 30x30cm triple -GEM detectors

@ 2D XY strip readout (400 um pitch)

@ Readout electronics capable of 1M
events/sec
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Under construction: PRR30

Range Finder

& 48 Plastic scintillators 3mm each
(15cm water equ)

& WLS fiber to SiPM

@ ADC readout triggered by 2
scintillators in coincidence

30MeV to 190MeV Residual Energy

Tracker

& Two 30x30cm triple -GEM detectors

@ 2D XY strip readout (400 um pitch)

@ Readout electronics capable of 1M
events/sec

mmm) New development was needed!
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High-speed GEM readout

New developments in GEM readout technology

Main goal: ~1 MHz DATA THROUGHPUT
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