
Parallelizing ROOT geometry

Andrei Gheata

Forum on Concurrent Programming Models and Frameworks

June 6, 2012

Why parallelizing geometry ?

• Geometry is a key component in many HEP applications
– Simulation MC, reconstruction, event displays, geometry DB’s, …

• Some use geometry as wrapper to extract 3D or material
information
– like positions, sizes, matrices, alignment, densities, …
– Optimizing the usage of this info is application responsibility

• Like OpenGL internally decomposes the objects in lower level
representations that can be handled in parallel

• Some of the HEP applications use directly geometry
functionality, namely navigation
– Namely transport MC and tracking code
– As these applications can and will be parallelized, geometry has

to follow…

What kind of parallelism ?

• Geometry is a utility – it has to be thread safe
– Covered in this presentation

• Navigation is iterative – next step cannot start unless last one finished
– Query -> propagate -> query -> propagate
– Has to support at top level a task-based parallelism (e.g. different tracks to different threads)

• Navigation algorithms are hard to factorize
– Tree-oriented queries (ups and downs in a hierarchy of volumes/nodes)
– Answers are results of a minimization procedure, it is hard to work ahead
– The state changes and has to be propagated all along the query

• Most natural low level factorization – solids
– Main loops organized at volume/voxels level
– 3D shapes are the local “computation objects” and contain most CPU-expensive algorithms
– Good candidates for GPU kernels, but communication of the state can be a limiting factor due

to memory bus latency

• Vectorization – ideal for low level computation
– Propagating several state vectors (position, direction) to the same solid type

• If solids are vector-aware, can we assemble decent vectors to feed the same solid?

• Long term development – to be addressed by the unified solids project

Geometry data structures

• ROOT geometry was NOT thread safe by design
– In the attempt to maximize re-usage of cached geometry states or pre-computed values, state-

related info was carried by many geometry data types
• Voxel optimisation structures, divisions, assembly shapes, composite shapes, geometry manager

• Many methods, including simple getters, were not thread safe
• The stateful part of the geometry was not clearly separated from the const one

class TGeoPatternFinder : public TObject
{
…
 Double_t fStep; // division step length
 Double_t fStart; // starting point on divided axis
 Double_t fEnd; // ending point
 Int_t fCurrent; // current division element
 Int_t fNdivisions; // number of divisions
 Int_t fDivIndex; // index of first div. node
 TGeoMatrix *fMatrix; // generic matrix
 TGeoVolume *fVolume; // volume to which applies
 Int_t fNextIndex; //! index of next node

Re-design strategy

• The goal was to make geometry thread safe without
sacrificing existing optimizations

• Step 1: Split out the navigation part from the geometry
manager
– Most data structures here depend on the state
– Different calling threads will work with different navigators

• Step 2: Spot all thread unsafe data members and methods
within the structural geometry objects and protect them
– Shapes and optimization structures
– Convert object->data into object->data[thread_id]

• Step 3: Rip out all stateful data from structural objects to
keep a compact const access geometry core
– Whenever possible, percolate the state in the calling sequence

Problems along the way

• Separating navigation out of the manager was a
tedious process
– Keeping a large existing API functional

• Spotting the thread-unsafe objects was not obvious
– Practically all work done by Matevz Tadel (thanks!)

• Changing calling patterns was sometimes impossible,
resources needed to be locked
– First approach suffered a lot from Amdahl law

• Many calls to get the thread Id needed, while there
was no implementation of TLS in ROOT
– __thread not supported everywhere

TGeo
Navigator

Implementation

• Thread data pre-alocated via TGeoManager::SetMaxThreads()
• User threads have to ask for a navigator via TGeoManager::CreateNavigator()
• Getting access to a stateful data member goes via:

– statefulObject->GetThreadData(tid)->fData
– For voxel structures they are ripped out into stateful data in the navigator, passed as

arguments to methods

Analysis
manager

TGeo
Navigator

TGeo
Navigator

TGeo
Navigator

0

1 2 3

Stateless
const

TGeoManager::
ThreadId()

Data structures

static __thread tid=0 tid=1 tid=2 tid=3

st
at

e
fu

l

st
at

e
fu

l

st
at

e
fu

l

st
at

e
fu

l

struct ThreadData_t {statefull data members;}

mutable std::vector<ThreadData_t*> fThreadData

Usage
//___
MyTransport::PropagateTracks(tracks)
{
// User transport method called by the main thread
 gGeoManager->SetMaxThreads(N); // mandatory
 SpawnNavigationThreads(N, my_navigation_thread, tracks)

JoinNavigationThreads();
}

void *my_navigation_thread(void *arg)
{
// Navigation method to be spawned as thread
 TGeoNavigator *nav = gGeoManager->GetCurrentNavigator();
 if (!nav) nav = gGeoManager->AddNavigator();
 int tid = nav->GetThreadId(); // or TGeoManager::ThreadId()
 PropagateTracks(subset(tid,tracks));
 return 0;
}

Speed-up

• Good scalability with rather
small Amdahl effects (~0.7 %
sequential
– No lock on memory resources

however !
– Work balancing is not perfect

(worsen by CPU throttling)

• Small overheads due to
several hidden effects
– Context switches, false cache

sharing (?), pthread calls
– May need to re-organize

stateful data per thread
rather than

Overview

• Thread safety for geometry achieved, introducing 1-2% overhead
compared to the initial version
– Additional ThreadId() and GetThreadData() calls
– Fast and portable thread ID retrieval implemented via

ThreadLocalStorage.h
• __thread for Linux/AIX/MACOSX_clang
• __declspec(thread) on WIN
• pthread_(set/get)specific for SOLARIS, MACOSX

• Parallel navigation to be enabled via: gGeoManager-
>SetMaxThreads(N)
– Each thread works with its own navigator: gGeoManager->AddNavigator()

• No locks, very good scalability
– Stateful data structures migrated to thread data arrays, allocated at

initialization
• fStateful -> struct ThreadData_t {<type> fStateful;} -> std::vector<ThreadData_t*>

– Small overheads (~0.7%) to be investigated

Future plans

• Geometry navigation is not a simple parallel problem – re-
shuffling of navigation algorithms will be needed
– Propagating vectors from top to bottom

• When available from the tracking code…
• Re-think algorithms for solids from this perspective

– Factorizing loops within a volume
• Low level optimization at the level of voxels
• Data flow model and locality to be thought over

– Minimizing latencies and cache misses when using low-level computational
units (GPU)

• The time scale is few years, but the work has to start now
– Many of these issues to be addressed in the Unified Solids

framework

