TOTEM Status Report

Jan Kašpar on behalf of the TOTEM collaboration

LHCC Open Session, 13 June, 2012

The TOTEM experiment

programme

- elastic scattering measurement in a wide *t*-range
- total cross-section measurement and
- a study of soft and hard diffraction

detectors

 \leftarrow forward telescopes T1 and T2 charged particles from inelastic collisions

← Roman Pots in the LHC elastic+diffractive protons

- all detectors fully operational
- T1 and T2 ready for data-taking
- Roman Pots waiting for beam-based alignment

Recently published results

Measurement of the forward charged particle pseudorapidity density in pp collisions at $\sqrt{s} = 7$ TeV with the TOTEM experiment EPL **98** (2012) 31002

Three publications in preparation

Elastic differential cross-section

• well compatible with previous results

compared to our previous publication EPL96
 - 15× higher statistics

 $|t|_{\min} \approx 5 \cdot 10^{-3} \text{ GeV}^2 \Rightarrow 91\% \text{ of cross-section observed (only 67\% before)}$

Elastic cross-section – Uncertainty assessment

• analysis *t*-dependent (green)

- misalignments
- optics imperfections
- energy offset
- acceptance correction
- unsmearing correction

• analysis normalization (orange)

- event tagging
- background subtraction
- detector efficiency
- reconstruction efficiency
- trigger efficiency– "pile-up" correction

• luminosity (blue)

 \Rightarrow reliable uncertainty estimates including correlations

Inelastic cross-section I

1) most inelastic events hit T2 \Rightarrow counting events with T2 trigger $\Rightarrow \sigma_{\text{inel.raw}}$

2) $\sigma_{\text{inel,raw}} \longrightarrow \sigma_{\text{inel,T2visible}}$: "detector corrections" = trigger and tracking efficiency, beam-gas background, pile-up

 $\sigma_{\text{inel,T2visible}} = (69.7 \pm 0.1^{\text{stat}} \pm 0.7^{\text{syst}} \pm 2.8^{\text{lumi}}) \text{ mb}$

 $\sigma_{\text{inel},\eta < 6.5} = (71.0 \pm 0.1^{\text{stat}} \pm 0.7^{\text{syst}} \pm 2.8^{\text{lumi}}) \text{ mb}$

Inelastic cross-section II

4) $\sigma_{\text{inel},\eta < 6.5} \longrightarrow \sigma_{\text{inel},\text{full}}$: mainly low-mass single diffraction (M < 3.4 GeV)

• considered range of Monte Carlos – QGSJET-II-4 found most reliable – still large uncertainty: correction = $(3.7 \pm 2.0)\%$

 $\sigma_{\text{inel,full}} = (73.7 \pm 0.1^{\text{stat}} \pm 1.7^{\text{syst}} \pm 2.9^{\text{lumi}}) \text{ mb}$

BUT: TOTEM can constrain the contribution of low-mass diffraction – see slide

\mathcal{E} lastic + Inelastic \rightarrow Total cross-section

Four cross-section measurements

perfect consistency among all 4 cross-section determinations

low uncertainty \Rightarrow important for extrapolations

Elastic + *Inelastic* \rightarrow ...

luminosity calibration

 $\left|\mathcal{L}_{int} = \frac{1+\varrho^2}{16\pi} \frac{(N_{el} + N_{inel})^2}{dN_{el}/dt|_0}\right|$

October: $\mathcal{L}_{int} = (83.7 \pm 3.2) \ \mu b^{-1}$ [CMS: $(82.0 \pm 3.3) \ \mu b^{-1}$]June: $\mathcal{L}_{int} = (1.65 \pm 0.07) \ \mu b^{-1}$ [CMS: $(1.65 \pm 0.07) \ \mu b^{-1}$]

 $\sigma_{\rm el}/\sigma_{\rm tot}$ independent of luminosity and ϱ

 $\frac{\sigma_{\rm el}}{\sigma_{\rm tot}} = 0.257 \pm 0.005$

e determination

$$ho^2 = 16\pi \ \mathcal{L}_{int} \ \frac{dN_{el}/dt|_0}{(N_{el} + N_{inel})^2} - 1$$

TOTEM: $|\varrho| = 0.14 \pm 0.09$ COMPETE extrapolation $\varrho = 0.141 \pm 0.007$

low-mass single diffraction

 $M < 3.4 \text{ GeV} \Rightarrow \text{ all particles more forward than } \eta = 6.5 = \text{T2 acceptance limit}$ $\sigma_{\text{inel}}^{\eta > 6.5} = \sigma_{\text{tot}} - \sigma_{\text{el}} - \sigma_{\text{inel}}^{\eta < 6.5} = (2.3 \pm 2.2) \text{ mb} \qquad \text{[from MC: } \approx 2.6 \text{ mb]}$ Data-taking with CMS: April

engineering run (RP alignment) trigger: CMS jets → TOTEM

CMS+TOTEM data synchronization:

Bunch number difference

Data-taking with CMS: May

low-pile-up run, 8M events collected, RPs not insertedexchange of triggers:

TOTEM \longrightarrow CMS: trigger menu \longrightarrow TOTEM

 \Rightarrow both experiments recorded the same events

physics potential due to large coverage: CMS+T1+T2 = -6.5 < η < +6.5
- dN_{ch}/dη over the complete range with the same min. bias trigger
- total inelastic cross-section
- multiplicity distributions and correlations (forw./back., forw./cent.)
- rapidity gap distributions, multi-gap and central-gap events
- jets – underlying event studies extended to forward region
- energy flow and multiplicity between central and forward jets

Data-taking with CMS: including RPs

• triggering with RPs possible due to **electrical trigger**

- transfers signals RP 220 \leftrightarrow CMS in time
- recently installed and commissioned

• central, single diffraction – trigger – CMS: jets, TOTEM RPs: 1 or 2 protons

• example: exclusive di-jet production

Plans for 2012 runs

Special run at $\beta^* = 90 m$, 156 bunches

- CMS + TOTEM T1, T2 and Roman Pots = very large acceptance
- proton acceptance: $|t|\gtrsim 0.02~{
 m GeV}^2$, any ξ
- soft and medium-hard diffraction, elastic and total cross-section
 expected early July

Standard runs at $\beta^* = 0.6 \text{ m}, \approx 1400 \text{ bunches}$ • TOTEM Roman Pots + CMS • proton acceptance: $\xi \gtrsim 2 - 3\%$, any t• high luminosity \Rightarrow high masses accessible

Special run at $\beta^* = 500 \text{ m}$, low luminosity • low-|t| elastic scattering

determination of *ρ*

Conclusions

• TOTEM has published the forward charged particle pseudorapidity density in pp collisions at $\sqrt{s} = 7$ TeV

- TOTEM has measured total, elastic and inelastic cross-sections with several methods including the luminosity-independent one
 - soon to be published in 3 papers
 - soon to be repeated at $\sqrt{s} = 8$ TeV

two successful data-takings with CMS, common data analysis in progress
 ⇒ exciting measurement possibilities already for this year

• very low-|t| elastic scattering measurement planned with $\beta^* = 500$ m \Rightarrow possibility to determine the ϱ parameter