

The RD51 Collaboration: « Development of Micro-Pattern Gas Detector Technologies » Leszek Ropelewski, CERN, Switzerland Maxim Titov, CEA Saclay, France

OUTLINE:

RD51 Motivation and Main Objectives

RD51 Collaboration Activities and Results (Large area MPGD developments, Software & Simulation, SRS Electronics, CERN MPGD Production Facility & Industrialization, RD51 Test Beam Facility, Training)

RD51 Plans and Outlook

110th LHCC Meeting, CERN, 13-14 June 2012

MPGD Developments: Historical Roadmap*

(*Many more micro-pattern structures were developed; only widely spread technologies are shown)

From A.Ochi ADA2012@Kolkata (updated)

Micro-Pattern Gaseous Detectors: Technologies for Future Projects

- Micromegas
- GEM

Micro Mes

Anode Strip

- Thick-GEM, Hole-Type Detectors and RETGEM
- MPDG with CMOS pixel ASICs ("InGrid")

Micro-Pixel Chamber (μPIC)
 Drit Cathode
 H/1 = 700
 Lons
 Cathode Mesh
 Edition Region
 Conversion Gap
 Conversion Gap

CMOS high density readout electronics

Ingrid

Micromegas

Amplification Region

1 kV/cm

40 kV/cm

Ionising Particle

HV2 = 400V

GEM

THGEM

MHSP

μΡΙϹ

RD51 Collaboration: "Development of MPGD Technologies"

The main objective of the R&D programme is to advance <u>technological development</u> of Micropattern Gas Detectors

• <u>~ 80 institutes</u>

~ 450 people involved

• Representation (Europe, North America, Asia, South America, Africa)

"RD51 aims at facilitating the <u>development</u> <u>of advanced gas-avalanche detector</u> <u>technologies</u> and associated electronicreadout systems, <u>for applications in basic</u> <u>and applied research</u>"

RD51 contributes to the LHC upgrades, BUT, <u>the most important is:</u> RD51 serves as an access point to MPGD "know-how" for the world-wide community MPGD2011, the first conference in the international series in Asia

Kobe, Japan, September 2011

Growing Demand for the Micro-Pattern Gaseous Detectors

... MPGD are mostly used/proposed for high-rate tracking and photodetectors

- COMPASS Upgrade:
- > Micromegas and GEM detectors for high-rate tracking
- > Photon Detectors Using THGEM technology for RICH 1

• KLOE2 Upgrade:

> Large-area cylindrical GEMs for Inner Tracker

<u>• RHIC Upgrades:</u>

- > GEM Tracking for STAR Experiment
- GEM Tracking for PHENIX Experiment(+ drift micro-TPC); development of Ring Imaging version of HBD for particle ID

• Future JLAB Projects:

- > Thin-Curved Micromegas for JLAB/CLAS12
- > GEM Tracker for JLAB/Hall A High Luminosity (SBS) experiments

• Future FAIR Facility:

- > GEM Tracker and GEM TPC for the PANDA Experiment
- > GEM/Micromegas tracking in CBM Muon Chamber (MUCH)

• Future Electron - Ion Collider Facility:

> Tracking and particle ID detectors based on MPGD-technology

Growing Demand for the Cryogenic MPGDs (LAr, LXe)

... MPGD are used/proposed for dark matter & rare event searches and neutrino physics

Double Phase LAr Large Area LEM/TPC for <u>Neutrino Physics</u>

produced by CERN TS/DEM group & ELTOS company (I)

Direct charge readout under investigation [DARWIN Consortium, arXiv:1012.4767]

GridPix technology interesting for high single electron efficiency

Main challenges:

- Low temperature robustness
- Operation without quenchers
- Material outgassing and radiopurity

InGrid detector for <u>Dark Matter</u> <u>Searches</u> (DARWIN Consortium):

Spin off is important key word for the HEP labs to survive ...

Cosmic Ray Muon Tomography Using GEMs for Homeland security

T2DM2: Temporal Tomography Densitometric by the Measure of Muons

The <u>responsibility for the completion of the application projects lies with the institutes themselves</u>

MPGD Technologies for Energy Frontier (sLHC, LC)

Ongoing R&D Projects using MPGDs in the framework of HEP Experiments

	Vertex	lnner Tracker	PID/ photo- det.	EM CALO	HAD CALO	MUON Track	MUON Trigger
ATLAS	GOSSIP /InGrid	GOSSIP /InGrid				Micromegas	Micromegas
CMS						GEM	GEM
ALICE		TPC (GEM)	VHPMID (CsI- Thgem)				
Linear Collider		TPC(MM, GEM, InGrid)			DHCAL (MM,GEM, THGEM)		

RD 51 Collaboration - Working Groups

"Transverse organization" of MPGD activities in 7 Working Groups

	18		25			2 <u></u>	23
	WG1 MPGD Technology & New Structures	WG2 Characterization	WG3 Applications	WG4 Software & Simulation	WG5 Electronics	WG6 Production	WG7 Common Test Facilities
		Common test	http://rd51-				
Objectives	Design optimization Development of new geometries and techniques	standards Characterization and understanding of physical phenomena in MPGD	Evaluation and optimization for specific applications	Development of common software and documentation for MPGD simulations	Readout electronics optimization and integration with MPGD detectors	Development of cost-effective technologies and industrialization	Sharing of common infrastructure for detector characterization
	Large Area	Common Test	Tracking and Triggering		FE electronics requirements		
	MPGDs	Standards	Photon Detection	Algorithms	definition	Production Facility	Testbeam Facility
	Design	Discharge Protection	Calorimetry	Simulation Improvements	General Purpose Pixel Chip		
[asks	Optimization New Geometries Fabrication	Geometries Ageing &	Cryogenic Detectors		Large Area Systems with		
- 10 C		Hardness	X-Ray and Neutron Imaging		Pixel Readout		
	Development of Rad-Hard	Charging up	Astroparticle Physics Appl.	Common Platform (Root, Geant4)	Portable Multi-		
	Detectors	Capability			Channel System	Collaboration	Irradiation Facility
	Development of Portable Detectors	Study of Avalanche Statistics	Applications Synchrotron Rad. Plasma Diagn. Homeland Sec.	Electronics Modeling	Discharge Protection Strategies	with Industrial Partners	

PGD Training and Education Events

Feb. 2009 @ CERN: RD51 GEM & **Micromegas & assembly and training**

Jan. 2010 @ **RD51 Simulation School**

Contributions to the EDIT School: 2011 @ CERN; 2012 @ Fermilab

RD51

February 13 - 24 Fermilab, Batavia, Illinois U.S.A.

EDI2

RD 51 Collaboration Organization

<u>Consolidation around common projects:</u> large area MPGD R&D, CERN/MPGD **moduction facility, common electronics developments, software tools, beam tests**

WG1: large area Micromegas, GEM; THGEM R&D; MM resistive anode readout (discharge protection); design and detector assembly optimization; large area readout electrodes and electronics interface

WG2: double phase operation, radiation tolerance, discharge protection, rate effects, singleelectron response, avalanche fluctuations, photo detection with THGEM and GridPix

WG3: applications beyond HEP, industrial applications (X-ray diffraction, homeland security)

WG4: development of the software tools; microtracking; neBEM field solver, electroluminescence simulation tool, Penning transfers, GEM charging up; MM transparency and signal development, MM discharges

WG5: scalable readout system; Timepix multi-chip MPGD readout

WG6: CERN MPGD Production Facility; industrialisation; TT Network

WG7: RD51 test beam facility

RD 51 Collaboration Organization Consolidation around common projects: large area MPGD R&D, CERN/MPGD production facility, common electronics developments, software tools, beam tests "RD51 Common Projects" Large area (MM, GEM, THGEM) **Design optimization** (Generic R&D) (e.g. THGEM, Resistive MM) **WG2**: **WG1: WG5**: **MPGD SRS** Software and **RD51 Electronics** Simulation **WG4: WG6: WG7**: **CERN MPGD Workshop RD51 Common** & Industrialization Test Beam Facility

WG1: Large Area Detectors - "Bulk Micromegas" Technology

ILC DHCAL (Large area MM 1m² prototype: (6 Bulk of 32 *48 cm²)

Since 2010: "Resistive Bulk Micromegas" Technology

Spark neutralization and/or suppression
 Resistive strip parallel to readout strips

Uniformity, robustness, easy fabrication, large area detectors & small dead area→ "Full path of industrial production"

The resistive-strip protection concept

Resistive Bulk Micromegas for the ATLAS Muon System Upgrade

Development of large-area muon chambers for the ATLAS upgrade for high-luminosity:

> Rate: ≤15 kHz/cm²

uM space resolution

R12 + Si-telescope

-500 -400 -300 -200 -100

σ_{MM} ≈ 30-35 μm

箑

8400 iL 350

300

250 200 150

100

50

- > Spatial resolution: $\leq 100 \mu m$ (up to track) angles of 30 degrees); efficiency ~ 98 %
- > Trigger capability (time resolution: ≤ 10 ns)

χ² / ndf

Mean

Sigma

Constant

100 200 300 400 500

Space residual [um]

No ageing over 20 years of HL-LHC

0

Large area chambers

2D readout (x-y, x-u-v)

R12 (resistive strips)

Efficiency vs gain -- Ar:CO, (93:7)

Resistive MM for the ATLAS Muon System Upgrade

The ATLAS Small Wheel Upgrade:

Equip Small Wheels with 128 MM (0.5–2.5 m²):

 \rightarrow Combine <u>precision</u> and 2nd coordinate meas. and <u>trigger functionality</u> in a single device

Resistive strip Micromegas has been chosen as the baseline option for the upgrade of the Small Wheel:

~ 1200 m² of Resistive MM

Sector	Nbr sectors Nbr chambers/sector	MM layer area (containing rectangle)	Total Nbr MM layers	Total MM PCB area	Manufacturing plan (preliminary)
	MM layers/chambers		(w/o spares)		
Small	8x2=16	From ~0.68m ² (696x980)	512	0.88x512 = 450m ²	Yrs 2015
	4	T			+2016
	4x2=8	10 ~1m² (1420x/30)			
Large	8x2=16	From ~0.96m ² (1036X930)	512	1.5x512= 768m ²	Yrs 2015
	4				+2016
	4x2=8	To ~1.9m² (2300x835)			

WG1: Large Area Detectors - Single Mask GEM Technology

Since 2009: Single Mask GEM:

Chemical Polyimide etching

Copper electro etching

Stripping

Second Polyimide etching

Result

KLOE2: 3 GEM foils spliced (120 * 70 cm²)

Large Area Cylindrical GEM Detectors for KLOE2 Tracker:

The readout is a multilayer flexible circuit on a polyimide substrate providing a 2-dim point with XV strips at 650 µm pitch GEMs for CMS High Eta Project (1.6 > η > 2.1)

GEM for CMS Collaboration:

GEMs for High Eta Project:

- > Rate capability : 10 kHz/cm²
- > Spatial resolution: ≤100 µm; efficiency ~ 98 %
- > Trigger capability (time resolution: ~4-5 ns)
- Excellent Long-Term Operation

Triple-GEM Efficiency & Time Resolution:

Development and evaluation of large size GEM detectors for tracking and triggering

Assembly optimization for cost reduction

Self-stretching technique: assembly time reduction from 3 days \rightarrow 2 hours

GEMs for CMS High Eta Project (1.6 > η > 2.1)

CMS missing redundant tracking capability in high h-region (in particular, ME1/1-2/1):

Large Prototype: GE1/1 Beam Test @ RD51 setup

Formally approved as a CMS R&D project of interest (April 20, 2012)

About 1000 m² ; 216 triple-GEM detectors

Station	Nbr of modules	Module area	Total Nbr of modules	Total GEM foil area	Manufacturing plan
		(containing rectangle)	(w/o spares)	(3ple GEMs)	(preliminary)
1	18x2x2=72	~0.43m² (440x990)	72	0.43x72x3= <mark>93</mark> m ²	Yrs 2014+2015
2	36x2=72 (long)	~2.4m ² (1251x1911)	144	(2.4+1.6)x72x3= <mark>864m</mark> ²	Yrs 2015+1016
	36x2=72 (short)	~1.6m² (1251x1281)			

ALICE Upgrade: TPC Endplate with GEMs

Recent activity (since April 2012):

Total area: 32.5 m²

detector sizes from: 46 x 50 cm² to 88 x 112 cm²

→Use single-mask GEM technology

Goals and Requirements:

Replace MWPC with GEMs (Space-charge effects at 50 kHz Pb-Pb continuous readout too high with wires)

Limit GEM ion back-flow to 0.25% at gain 1500 (major R&D required)

Maintain excellent dE/dx resolution for particle Id and time stability

Thick-GEM for Photon Detection in COMPASS RICH

THGEM GENERIC **R&D**:

Novel Photon Detectors based on MPGDs offer: Reduced photon and Ion backflow (IBF) Intrinsically fast gaseous detectors

- Aligned holes : ~ 20%
- Staggered holes : < 5%
- Flower configuration: 2 THGEM layers: <5%

"Flower THGEM" configuration: THGEM 1 - holes of 0.6 mm diameter, 1.2 mm pitch THGEM 2 - holes of 0.3 mm diameter, 0.6 mm pitch, with 1/3 of the holes missing: the ones below the THGEM 1 holes

instead of photo-resist

- III large rim

- IV global etching

metallographic section

100 µm rim

60 x 60 cm² THGEM Prototypes

This configuration provides charge splitting and allows for ion backflow minimization

RD51 WG4: MPGD Simulation Tools

- Focus on providing techniques for calculating <u>electron transport in small-scale structures</u>
- > The main difference with traditional gas-based detectors is that <u>the electrode scale</u> (~ 10 μ m) is comparable to the collision mean free path
- 1) Development and Maintenance of Garfield++:

Garfield++ is a collection of classes for the detailed simulation of small-scale detectors.

Garfield++ contains:

- electron and photon transport using cross sections provided by Magboltz
- ionisation processes in gases, provided by Heed and MIP
- ionisation and electron transport in semi-conductors
- field calculations from finite elements, boundary elements, analytic methods

- Magboltz cross sections (Ar, Xe, He, Ne; GeH₄, SiH₄, C₂H₂F₄) are frequently updated in collaboration with LXCAT (<u>http://www.lxcat.laplace.univ-tlse.fr</u>)

3) Simulation Improvements:

- Penning transfers; gain fluctuations; Neutron detection; Photon feedback; VUV fluorescence

* 3) Modeling for MPGD Applications:

- Micromegas transparency
- GEM gain and charging up
- IBF for TPC Applications (e.g. ALICE GEM TPC)

WG4: MPGD Simulation Tools (Avalanche Simulation in GEM)

Animation of the avalanche process (monitor in ns-time electron/ion drifting and multiplication in GEM):

electrons are blue, ions are red, the GEM mesh is orange

- ANSYS: field model
- Magboltz 8.9.6: relevant cross sections of electronmatter interactions
- Garfeld++: simulate electron avalanches

Sven Dildick, Heinrich Schindler, Rob Veenhof

http://cern.ch/garfieldpp/examples/gemgain

WG4: GEM Charging-Up Simulation

Electric Field Intensity during the charging-up process:

each iteration correspond to the number of primary electrons that already reached to the hole

- ANSYS: field model
- Magboltz 9.0.1: relevant cross sections of electronmatter interactions
- Garfeld++: simulate electron avalanches

Pedro Correia Rob Veenhof

Charging effects are much smaller after (100 – 150) *10⁵ avalanches \rightarrow GEM gas gain stabilizes

WG5: Development of Scalable Readout System (SRS) for MPGD

GD Roos

Development of a portable multi-channel readout system (2009-2012):

Scalable readout architecture: a few hundreds channels up to very large LHC systems (> 100 k ch.)
 Project specific part (ASIC) + common acquisition hardware and software

Physical Overview of SRS:

- <u>Scalability</u> from small to large system
- <u>Common interface</u> for replacing the chip frontend
- <u>Integration</u> of proven and <u>commercial</u> <u>solutions</u> for a minimum of development
- Default <u>availability</u> of a very robust and supported <u>DAQ software package</u>

Frontend hybrids: so far all based on APV25 chip, VFAT, Beetle, and Timepix being designed

ADC frontend adapter for APV and Beetle chips

ADC plugs into FEC to make a 6U readout unit for up to 2048 channels

FEC cards (common): Virtex-5 FPGA, Gb-Ethernet, DDR buffer, NIM and LVDS pulse I/O, High speed Interface connectors to frontend adapter cards

WG5: Development of Scalable Readout System (SRS) for MPGD

RD51

Development of a portable multi-channel readout system (2009-2012):

Scalable readout architecture: a few hundreds channels up to very large LHC systems (> 100 k ch.)
 Project specific part (ASIC) + common acquisition hardware and software

Physical Overview of SRS:

- <u>Scalability</u> from small to large system
- <u>Common interface</u> for replacing the chip frontend
- <u>Integration</u> of proven and <u>commercial</u> <u>solutions</u> for a minimum of development
- Default <u>availability</u> of a very robust and supported <u>DAQ software package</u>

- 2011: 12 full SRS system commissioned by CERN (project leader Hans Muller (CERN))
- 2012: Outsourcing to industrial production (PRISMA, Greece) and sales via CERN store
 → Total volume of pending orders of SRS systems (for RD51) 250 kEUR
- Next step: Redesign SRS in Advanced TCA (EicSys / ELMA) → fully commercial product

WG5: RD51 / MPGD SRS User Status

CERN experiments (large systems, > 100 k ch., 2 EUR/ch.)

- ATLAS upgrade MMegas, (VMM1 readout chip developer, SRS Adapter by Arizona Univ, MMDAQ)
- ALICE EMCaL + FOCAL, SRU-based backend (50 kHz upgrade via SRS, DATE, new: Focal readout via SRS-Beetle ?)
- ALICE TPC upgrade, SRS readout electronics with DATE backend ?
- •CMS high Eta GEM collaboration (VFAT hybrid and VFAT SRS adapter, in prep.)
- Totem upgrade R&D , SRS VFAT readout, DATE ?

CERN/HEP experiments (medium systems > 10 k ch.)

- ATLAS upgrade MMegas (8kch APV-SRS systems, 1st SRS testbeams, MMDAQ dev
- NA62 ref. tracker with Micro-Megas (1kCH-SRS Minicrate, MMDAQ)
- NEXT Coll., dual Beta decay, SiPM, PM (Collaboration on SRS HW & FW, FEC cards, DATE)
- BNL GEM detector readout (2kCH. APV Minicrate, PHENIX SRDAQ porting to SRS)
- Jeff. Lab Virginia Univ. GEM prototyping, (Minicrate, Offline Data evaluation via AMORE + DATE)

R&D with MPGD's (small systems < 2 k ch.)</p>

- Bonn/Mainz Univ, Timepix readout (SRS- Timepix adapter card)
- Helsinki HIP, GEM-MMega (SRS evaluation, Trigger pickup box via CSP)
- MEXICO UNAM, THGEM 2x (SRS Minicrate, DATE)
- C.E. Saclay, Micromegas (2k Ch SRS Minicrate, MMDAQ)
- WIS Israel, THGEM 3x (Minicrate, Beetle hybrid, SRS- Labview Beta tester
- INFN Naples (Minicrate, Labview for SRS developer, CTF card , Zero-supression code

Applications with Cosmic Tomography (> 100 k ch.)

- FIT Florida, Muon Tompography for homeland security, GEMs (1st 16K SRS application, DATE
- Geoscienes CRNS- Waterquality in Rocks, MMegas (5kCh SRS Crate, DATE, Labview)

* Teams waiting for commercial SRS delivery (to be produced by PRISMA Greece) – 16 systems

- RD51 lab, Radcore, WIS, USTC, SAHA, INFN Bari, INFN Napoles, Stony Brook, Freiburg Univ
- Yale Univ, J-Parc-RIKEN, East Carol. Univ., Jeff-Lab, Tsinghua Univ, Univ Texas,

SRS Minicrate up 4k ch.

SRS crate 16k ch.

WG6: CERN Workshop Upgrade for the MPGDs

- Today, CERN-MPGD workshop is the UNIQUE MPGD production facility (generic R&D, detector components production, Q&A quality control)
- <u>Future Upgrade of the workshop has been approved by CERN management (Nov. 2009)</u>: New infrastructure to fabricate 2x1m Bulk Micromegas and 2x0.5 m GEMs is delivered to CERN; installation to be completed in September 2012

2009 RD51 Survey:

Detector technology	Currently produced	Future requirements	
	cm * cm	cm * cm	
GEM	40 * 40	50 * 50	
GEM, single mask	70 * 40	200 * 50	
THGEM	70 * 50	200 * 100	
RTHGEM, serial graphics	20 * 10	100 * 50	
Micromegas, bulk	150 * 50	200 * 100	
Micromegas, microbulk	10 * 10	30 * 30	
MHSP (Micro-Hole and Strip Plate)	3*3	10 * 10	

2012 Status/Machine Delivery:

GEM		market	call for	order	received	ready
		survey	tender			
-	1 continuous polyimide etcher	X	X	X	X	06/2011
-	1 Cu electroetch line	X	x	X	X	06/2011
Mi	cromegas					
-	1 large laminator	X	X	X	x	06/2011
-	1 large Cu etcher	X	X	X	x	09/2012
-	1 large UV exposure unit	X	X	X	x	06/2011
-	1 large resist developer	X	X	X	x	09/2012
-	1 large resist stripper	X	X	X	x	09/2012
-	1 large oven	X	X	X	x	06/2011
-	1 large dryer	x	X	X	x	06/2011

 Large Area Detectors: ATLAS Muon System Upgrade (Micromegas) and CMS Muon System Upgrade (GEM) has been approved as "official R&D projects" (April/May 2012)

WG6: MPGD Technology Industrialization

Technology Industrialization \rightarrow transfer "know-how" from CERN workshop to Industrial partners for MASS PRODUCTION

THGEM Technology: ELTOS S.p.A (Italy), PRINT ELECTRONICS (Israel)

540 (V)

120

400

Pooling of RD51 developments as a basis for common technology offer:

Scalable Readout systems: European Organization for Nuclear Research

Scalable Readout System for Multi Channel Detector Systems

Abstract

Based on developments for Micro Pattern Gas detectors for the detection of particles in many different application domains, the Scalable Readout System (SRS) for multi channel detectors to accommodate an interface to a wide range of commonly used readout ASICS, a scalability from low to large number of readout channels, a flexible data acquisition package enabling the implementation of various readout architectures and trigger schemes based on widely used industrial standards.

Technology stage

Various prototypes are available off the shelf or can be produced on short term. CERN and RD51 provide support and solutions (data acquisition, chip boards, readout software) for integration of the SRS with user specific detectors and support

- Scalable from few channel systems up to a few millions of readout channels. • User program le trigger and clock interface
- Possibility tegrate application specific Cards
- Availa few readout channels svster

sical overview SRS of RD51

Hybrid adapter & FEC = portable DAQ

-specific front end electronics with discharge protection

stem with DATE

Specifications

- 10 Gigabyte Ethernet standard
- readout links.
- Programmable Front End Cards

Status of MM industrialization license:

Both CEA and CERN will be entitled to grant licenses on Micromegas technology (based on co-ownership agreement)

Licenses for ELTOS & CIREA for MM industrialization are under preparation **2 GEM industrialization licenses signed:**

2011-2012:

Technology Transfer - Summary:

After initial contacts with participants to the **RD51 Collaboration, China Institute of Atomic Energy** & NewFlex approached CERN to request a GEM license

KR1934/KT/TE/PH/023L

ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE

 CERN European organization for Nuclear Research

AGREEMENT KR1934/KT/TE/PH/023L

LICENSE AGREEMENT FOR MANUFACTURING

AND COMMERCIALISATION OF GEM FOILS AND GEM-BASED PRODUCTS

Licensee: Newflex Technology Co Ltd, Kore

ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

AGREEMENT K 1949/TT/TS/PH/023L

LICENSE AGREEMENT FOR MANUFACTURING AND COMMERCIALISATION OF GEM FOILS AND GEM-BASED PRODUCTS

> Licensee: China Institute of Atomic Energy

WG7: Common Test Beam Facility at H4 SPS

3-periods (9+12+6 days) CMS-GEM 3-periods JLAB-GEM 1-period TOTEM-GEM 3-periods COMPASS-THGEM 2 periods DHCAL-THGEM 1 period CALICE-umegas 1 period GEM-TRT 1 period

WG7: Common Test Beam Facility at H4 SPS

300 200 100

4Ó

30

2Ó

10

0

-10

Common RD51 infrastructure: GEM and MMs beam telescopes, HV, gas & power lines ...

Major WG7 organization & coordination efforts: Y. Tsipolitis (NTU Athens) and E. Oliveri (CERN)

2012: New beam telescope with 5 resistivestrip μmegas chambers with x-y readout, 250 μm strips, active area 9x9 cm²

2012: 3-periods (14+14+13days) (4 – 18 June, 9 – 23 July, 2 – 15 November)

-20 -30

-40

-50

2012: RD51 Plans and Outlook

RD51 would like to continue common project activities:

- Large area detectors and new MPGD technologies development
- Development and support of the simulation tools
- Support of SRS electronics
- Completion of the MPGD production upgrade
- MPGD Industrialization
- Maintenance of the RD51 beam facility

The Collaboration would like to ask for continuation of limited support :

- Access to RD51 test beam facility (keep "semi permanent" setup & extra beam time)
- Access to CERN MPGD Printed Circuit Workshop (manpower support of further knowledge and technical maintanance for the MPGD Technologies)
- Access to central computing resources for MPGD simulations
- Limited amount of office space

RD51 is planning to submit request for prolongation (executive summary) to the LHCC for the next 5 years term (beyond 2013) in November'2012

BackUp Slides

RD51 Collaboration Milestones

• CERN MPGD workshop (10-11 September 2007)

Micro Pattern Gas Detectors. Towards an R&D Collaboration. (10-11 September 2007)

- 1st draft of the proposal presentation during Nikhef meeting (17 April 2008) <u>Micro-Pattern Gas Detectors (RD-51) Workshop, Nikhef, April 16-18, 2008</u> Gas detectors advance into a second century - CERN Courier
- Proposal presentation in CERN/LHCC open session (2 July 2008)

<u>94th LHCC Meeting Agenda (02-03 July 2008);</u> <u>CERN-LHCC-2008-011 (LHCC-P-011)</u>

- CERN/LHCC committee close session (24 September 2008)
 <u>Meeting with LHCC referees (23 September 2008)</u>; <u>LHCC-095 minutes</u>
- 2nd RD51 Collaboration meeting (Paris 13-15 October 2008)

2nd RD51 Collaboration Meeting (13-15 October 2008)

CERN Research Board approval(5 December 2008)
 <u>186th Research Board meeting minutes</u>

RD51 Common Projects in 2011

SUPPORT FOR GENERIC R&D:

2011: 4 proposals approved under the call for Project Funding from the RD51 CF

> Thin and high-pitch laser-etched mesh manufacturing and bulking (Saclay / CERN / Bari)

- Development of innovative resistive GEM alpha detectors for earthquakes prediction and homeland security (INFN Bari / UNAM, Mexico / INFN Padova / INFN Frascati)
- MPGDs technology laboratory for training, development, fabrication, applications and innovation (Universidad Antonio Nariño, Columbia / Brookhaven National Laboratory/ Helsinki Institute of Physics / HEPTech / GSI Helmholtzzentrum)

> A low mass microbulk with real XY strips structure (NCSR Demokritos / Saclay/ Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza / CERN)

Advancing Concepts: Vertex / Inner Tracking

ATLAS sLHC Inner Tracking (r ~ 5 - 100 cm):

Baseline remains silicon (Planar, 3D-silicon, Diamond)

> GOSSIP & GridPix- ATLAS R&D Project (2010-2013)

r ~ 70 -100 cm from IP

SkU

Major R & D still required for this development

50 Mm

11 22 SEI

X300

F. Hartjes, Detector R&D, March 2009

technology	Planar silicon	3D silicon	Diamond	Gossip
possible pos resolution (um)	< 10	< 10 ?	~ 14 (polycryst)	~20
resolution for inclined tracks	reasonable	reasonable	reasonable	mediocre
charge collection time (ns)	<6	20 - 35	2	20 - 80
mass including cooling	pretty high	pretty high	medium	low
life time in SLHC (3000 fb-1)	20 - 50%?	~ 50%	~ 50%	> 100% poss
production technology	well known	difficult	difficult	much R&D
bias voltage control	easy	easy	easy	critical
ease of operation	reasonable	reasonable	relaxed	critical
cooling	critical	less critical	relaxed	relaxed
additional services	NO	NO	NO	HV + gas
additional DAQ channels	NO	NO	NO	probably
track efficiency	100%	>95%?	98-100%	98%
costs	75 - 300 €/cm2	150 - 300 €/cm2	~1000 €/cm2?	20-30 €/cm2
size of coll. (ATLAS institutes)	>10	10	6	2
approved R&D?	yes	yes	Yes	near submit