Flavor Physics and CP Violation 2012

The LHCb upgrade

Leandro de Paula on behalf of the LHCb collaboration

Universidade Federal do Rio de Janeiro Brazil

May 21-25, 2012, University of Science and Technology, Hefei, AnHui, China

Outline

Introduction
The LHCb detector
The LHCb upgrade
Conclusion

Letter of intent for the LHCb upgrade, LHCC-I-018, 2011

CP violation measurements

Moriond 2012

• Flavour changing processes and CP violation are driven by CKM mechanism

Highlight on hot measurements

SM like

- Branching fraction $B_{d,s} \rightarrow \mu\mu$
- *CP violation phase in* B_s *mixing* $\Phi_s = -0.17 \pm 0.14 \pm 0.11$ [HFAG]
- $\circ \quad A_{FB} \text{ in } B \rightarrow K^* \mu \mu$

$$q_0^2 = (4.9 + 1.1) - 1.3) GeV^2/c^2$$

Indirect search for new physics

• Flavour changing processes are mediated by box and penguin amplitudes

Sensitive to the coupling and the mass of the new particle

- To probe new particles, measure observables
 - * involving flavour changing processes suppressed or forbidden in the SM
 - well predicted in the SM

and look for deviation with respect to expectation

The LHCb Detector

More details: The LHCb detector at LHC, JINST 3 (2008) S08005

LHCb operation conditions

2011

• Recorded luminosity 1.1 fb⁻¹

tor washing and the

- Constant luminosity of $\sim 3.5 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$
- Interactions per beam crossing ~ 1.4

7 TeV [0.037 fb⁻¹ in 2010] [design 2×10³²] [design 0.4]

LHCb operation conditions

Recorded luminosity 0.28 fb⁻¹ (until May 24th)
 Intend to collect 1.5 fb⁻¹ before 2013 shutdown
 and to collect ~ 5 fb⁻¹ before 2018 shutdown

4.0

Golden observables for LHCb

- Branching fraction $B_{d,s} \rightarrow \mu\mu$
- CP violation phase in B_s mixing
- A_{FB} in $B \rightarrow K^* \mu \mu$
- Angle γ in $B_{(s)} \rightarrow D_{(s)}$ K mediated by tree amplitude
- Photon polarisation in $B_s \rightarrow \varphi \gamma$
- CP violation in charm

0 ..

Golden observables for LHCb

Callen and is tory was to me we competed in a survey to the second with the second as a survey of

Observable	State of art	Sensitivity @ 5 fb ⁻¹	Theory uncertainty
$BF(B_s \rightarrow \mu\mu)$		~ 10-9	0.2 ×10-9
$BF(B^0 \rightarrow \mu\mu)/BF(B_s \rightarrow \mu\mu)$			~ 5%
<i>CP violation phase</i> ϕ_s	~ 0.1 rad	~ 0.02 rad	~ 0.002 rad
zero of $A_{FB}(q^2)$ [$B \rightarrow K^*\mu\mu$]	~ 1 GeV ²	~ 0.14 GeV ²	~ 0.05 GeV ²
Angle γ (tree)	~ 20°	~ 4°	negligible

Golden observables for LHCb

Observable	State of art	Sensitivity @ 5 fb ⁻¹	Theory uncertainty
$BF(B_s \rightarrow \mu\mu)$		~ 10-9	0.2 ×10-9
$BF(B^0 \rightarrow \mu\mu)/BF(B_s \rightarrow \mu\mu)$			~ 5%
<i>CP violation phase</i> ϕ_s	~ 0.1 rad	~ 0.02 rad	~ 0.002 rad
zero of $A_{FB}(q^2)$ [$B \rightarrow K^*\mu\mu$]	~ 1 GeV ²	~ 0.14 GeV ²	$\sim 0.05 \ GeV^2$
Angle γ (tree)	~ 20°	~ 4°	negligible

Sources of observed processes likely to have the SM patterns
 Need to increase sensibilities — LHCb Upgrade

LHCb upgrade: Targets

- Reach experimental sensibilities comparable or better than theoretical uncertainties
 - Increase the annual yield by a factor 5 for leptonic channels and by a factor 10 for hadronic ones
 - Collect 50 fb-1
 - Enlarge core physics program
 - Leptons flavour physics [Majorana neutrino, LV in τ decays]
 - Electroweak physics
 - Exotic search
 - QCD

[sin $2\theta_{eff}$, M_W]

[hidden valleys ...]

[central exclusive production]

Running conditions

★ Constant luminosity of ~ 10³³cm⁻²s⁻¹ with 25 ns bunch spacing

* sub-systems should sustain peak luminosity of 2×10^{33} cm⁻²s⁻¹

 \star Interactions per beam crossing ~ 2.3

Already tested during 2011

Trigger: current strategy

40 MHz

Pileup PS, SPD, ECAL, HCAL Muon

Level 0 $p_T of \gamma, e^{\pm}, h^{\pm}, \mu^{\pm}$ custom electronics

1 MHz

All detector information

High Level Trigger tracking and vertexing inclusive/exclusive selections

4 kHz

Trigger: current strategy

40 MHz.

Pileup PS, SPD, ECAL, HCAL Muon

Level 0 $p_T \ of \ \gamma, \ e^{\pm}, \ h^{\pm}, \ \mu^{\pm}$ custom electronics

1 MHz

All detector information

High Level Trigger tracking and vertexing inclusive/exclusive selections

4 kHz

Saturates with increasing luminosity

Trigger: upgrade

40 MHz

ECAL, HCAL Muon

Low Level Trigger p_T of γ , e^{\pm} , h^{\pm} , μ^{\pm} custom electronics

1 - 40 MHz.

All detector information

High Level Trigger tracking and vertexing inclusive/exclusive selections

20 kHz.

LLT efficiencies

LLT rate (MHz)	1	5	10
$B_s \rightarrow \phi \phi$	0.12	0.51	0.82
$B^0 \rightarrow K^* \mu \mu$	0.36	0.89	0.97
$B_s \rightarrow \phi \gamma$	0.39	0.92	1.00

15

Trigger: upgrade

40 MHz

ECAL, HCAL Muon

Low Level Trigger p_T of γ , e^{\pm} , h^{\pm} , μ^{\pm} custom electronics

1 - 40 MHz

All detector information

High Level Trigger tracking and vertexing inclusive/exclusive selections

20 kHz

LLT efficiencies

LLT rate (MHz)	1	5	10
$B_s \rightarrow \phi \phi$	0.12	0.51	0.82
$B^0 \rightarrow K^* \mu \mu$	0.36	0.89	0.97
$B_s \rightarrow \phi \gamma$	0.39	0.92	1.00

A challenge to read out LHCb at 40 MHz

Tracking

At high luminosity, increase of

- number of primary vertices
- track multiplicity
- detectors occupancy
- number of ghost tracks
- bunch-to-bunch spillover

Challenge to keep

- momentum resolution $[\sigma(p)/p \sim 4 \times 10^{-3}]$
- high efficiency $[\sim 90\% \text{ if } p \ge 5 \text{ GeV}]$
- low ghost rate [~ 10%]
- low processing time [25 ms]
- low material budget

VELO upgrade

Strip detector (r, ϕ) with a pitch 35-100 µm to be replaced by

- Pixel detector
 - low occupancy channels
 - reduce combinatorial for tracking
 - → very high data rate \geq 12 Gbit

- VELOPix ASIC based on TimePix/Medipix chip
 - 256×256 pixels
 - square pixel $50 \times 50 \ \mu m^2$
- Alternative option based on strips

Tracker upgrade

Micro-strips silicon and gaseous detectors. To be replaced by

• TT

micro-strips silicon detector with greather η acceptance and finer granularity along the read out strips (vertical direction).

or

scintillating fibre + SiPM

Tracker upgrade

• T stations

Light and larger IT or

Central Tracker fibres + SiPM

RICH upgrade

 RICH1 and RICH2 - replace HPD by MaPMT and readout by a 40 MHz chip

L'an Low day by the

• RICH1 - remove aerogel

RICH upgrade

Proposal - replace aerogel by 0 Mirrored cylindrical surface Focusing block a time-of-flight detector Photodetectors TORCH (Time Of internally Reflected CHerencov light) Quartz plate 100 TORCH RICH1 RICH2 K- π separation (N $_{\sigma}$) 250 cm Mirrored edge 10 66 cm *R&D to start in 2012* 10 100 1 Momentum (GeV/c)

LHCb upgrade physics program

Туре	Observable	Current precision	Sensitivity @ 5 fb ⁻¹	Sensitivity @ 50 fb ⁻¹	Theory uncertainty	**
Gluonic penguin	$S(B_s \rightarrow \Phi \Phi)$ $S(B_s \rightarrow K^{*0} \overline{K}^{*0})$ $S(B_s \rightarrow \Phi K^0)$	- - 0.17	0.08 0.07 0.15	0.02 0.02 0.03	0.02 < 0.02 0.02	
B _s mixing	$2\beta_s (B_s \rightarrow J/\psi \Phi)$	0.35	0.019	0.006	~ 0.003	
Right-handed currents	$S(B_s \rightarrow \Phi \gamma)$ $A^{\Delta \Gamma s}(B_s \rightarrow \Phi \gamma)$	-	0.07 0.14	0.02 0.03	< 0.01 0.02	
EW penguin	$A_T^{(2)}(B \rightarrow K^{*0}\mu\mu)$ s ₀ A _{FB} (B $\rightarrow K^{*0}\mu\mu$)	- -	0.14 4%	0.04 1%	0.05 7%	
Higgs penguin	$BF(B_s \rightarrow \mu\mu)$ $BF(B^0 \rightarrow \mu\mu)/BF(B_s \rightarrow \mu\mu)$	-	30% -	8% ~ 35%	< 10% ~ 5%	
Unitarity triangle angles	$\begin{array}{c} \gamma \left(B \rightarrow D^{(*)} K^{(*)} \right) \\ \gamma \left(B_s \rightarrow D_s K \right) \\ \beta \left(B^0 \rightarrow J/\psi K^0 \right) \end{array}$	~ 20° - 1°	$\sim 4^{\circ}$ $\sim 7^{\circ}$ 0.5°	0.9° 1.5° 0.2°	negligible negligible negligible	
Charm CPV	$A_{\Gamma} A_{CP}(KK) - A_{CP}^{dir}(\pi\pi)$	2.5 ×10 ⁻³ 4.3 ×10 ⁻³	2 ×10-4 4 ×10-4	4 ×10 ⁻⁵ 8 ×10 ⁻⁵	-	23

LHCb time line

• Letter of intend submitted in March 2011

- * Physics case fully endorsed by LHCC
- * 40 MHz readout reviewed (challenging but feasible)
- Framework TDR to be submitted in June 2012
 - * cost, milestones and institutes' scientific interest
- TRD(s) in 2013
- Production and quality control in 2014-2017
- Installation and commissioning in 2018

Water a the second for and the second of the

25

anistant gale have a

- Excellent performance of LHC and LHCb
- LHCb has demonstrated to be able to operate and to do an excellent physics in a high multiplicity track environment

- Excellent performance of LHC and LHCb
- LHCb has demonstrated to be able to operate and to do an excellent physics in a high multiplicity track environment
- $LHCb(2012) \sim 1.5 \, fb^{-1} @ 8 \, TeV and 4 \times 10^{32} cm^{-2} s^{-1}$
- $LHCb(2017) \sim 5 \, fb^{-1}$ of recorded data
- LHCb upgrade has an exciting physics program

- Excellent performance of LHC and LHCb
- LHCb has demonstrated to be able to operate and to do an excellent physics in a high multiplicity track environment
- $LHCb(2012) \sim 1.5 \, fb^{-1} @ 8 \, TeV and 4 \times 10^{32} cm^{-2} s^{-1}$
- $LHCb(2017) \sim 5 \, fb^{-1}$ of recorded data
- LHCb upgrade has an exciting physics program
- It is good opportunity to join the LHCb collaboration!

谢谢!