Status of the PMNS Matrix

Werner Rodejohann (MPIK, Heidelberg) 24/05/12

Status of the PMNS Matrix

- What are the parameters of U?
 - θ_{12}
 - θ_{23}
 - θ_{13}
- Impact on θ_{13} on Phenomenology and Models

$$U = \begin{pmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i\delta} \\ -s_{12} c_{23} - c_{12} s_{23} s_{13} e^{i\delta} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{i\delta} & s_{23} c_{13} \\ s_{12} s_{23} - c_{12} c_{23} s_{13} e^{i\delta} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{i\delta} & c_{23} c_{13} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ \text{atmospheric and} \qquad \text{SBL reactor} \qquad \text{solar and} \\ \text{LBL accelerator} \qquad \qquad \text{LBL reactor} \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}} \\ 0 & \sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ (\sin^2 \theta_{23} = \frac{1}{2}) \qquad (\sin^2 \theta_{13} = 0) \qquad (\sin^2 \theta_{12} = \frac{1}{3}) \\ \Delta m_A^2 \qquad \Delta m_A^2 \qquad \Delta m_A^2 \qquad \Delta m_\odot^2 \end{pmatrix}$$

 P_{ee} tested in solar and long baseline reactor (KamLAND) experiments

no sign of new physics so far \leftrightarrow consistent with LMA

transition from $1 - \frac{1}{2}\sin^2 2\theta_{12}$ to $\sin^2 \theta_{12}$

Borexino

$heta_{12}$: status

 $\sin^2 \theta_{12} = 0.320^{+0.015}_{-0.017} (0.05)$ $\sin^2 \theta_{12} = 0.312^{+0.019}_{-0.018} (0.063)$ $\sin^2 \theta_{12} = 0.321^{+0.016}_{-0.016} (0.062)$

Tortola, Valle, Vanegas Fogli, Lisi *et al.*

Gonzalez-Garcia et al.

- remarkably stable
- 3σ -precision about 15 %
- tri-bimaximal value: $\sin^2 \theta_{12} = \frac{1}{3}$ marginally within 1σ
- hexagonal value: $\sin^2 \theta_{12} = \frac{1}{4}$ a bit outside 3σ
- golden ratio values: $\cot \theta_{12} = \varphi$ and $\cos \theta_{12} = \varphi/2$ marginally within 3σ
- QLC value: $\sin^2(\pi/4 \theta_C)$ marginally within 3σ
- no improvement in sight

θ_{12} : a phenomenological aspect

Ruling out the inverted hierarchy: go below

$$|m_{ee}|_{\min}^{\text{IH}} = \left(1 - |U_{e3}|^2\right)\sqrt{|\Delta m_{\text{A}}^2|} \left(1 - 2\sin^2\theta_{12}\right)$$

 θ_{12} -uncertainty introduces factor 3 uncertainty in lifetime...

 $P_{\mu\mu}$ or $P_{\mu\tau}$ tested in atmospheric and long baseline accelerator (K2K, T2K, MINOS) experiments

Signs of new physics:

- different Δm^2 for neutrinos and anti-neutrinos...
- faster than light OPERA neutrinos...

...all went away...

 $\sin^2 \theta_{23} = 0.49^{+0.08}_{-0.05} \stackrel{(0.15)}{_{(0.10)}}$ $\sin^2 \theta_{23} = 0.466^{+0.073}_{-0.058} \stackrel{(0.178)}{_{(0.135)}}$ $\sin^2 \theta_{23} = 0.462^{+0.08}_{-0.05} \stackrel{(0.18)}{_{(0.13)}}$

Tortola, Valle, Vanegas Fogli, Lisi *et al.* Gonzalez-Garcia *et al.*

- somewhat stable
- 3σ -precision about 30 %
- at 1σ : some sensitivity to mass hierarchy (fragile)
- at 1σ : some sensitivity to octant (fragile)
- maximal mixing: $\sin^2 \theta_{23} = \frac{1}{2}$ within 1σ
- improvement in sight

θ_{23} : perspectives

- 2-flavor analysis in vacuum goes with $\sin^2 2\theta_{23}$, hence octant and hierarchy determination needs necessarily 3-flavor and long-baseline analysis
- June, Neutrino2012 in Kyoto: updates of MINOS, T2K, IceCube
- future projects: No ν A, LBNE, LBNO, T2HK, INO,...

 P_{ee} or $P_{\mu e}$ tested in long baseline accelerator (T2K, MINOS) and reactor (Double Chooz, Reno, Daya Bay) experiments

Double Chooz: $\sin^2 2\theta_{13} = 0.086 \pm 0.051 \neq 0$ at 1.9σ Daya Bay: $\sin^2 2\theta_{13} = 0.092 \pm 0.017 \neq 0$ at 5.2σ RENO: $\sin^2 2\theta_{13} = 0.113 \pm 0.023 \neq 0$ at 4.9σ

at least, Double Chooz are the only ones who made it to Big Bang Theory...

Year of the dragon

should rather be...

... Year of the reactor!

Double Chooz: $\sin^2 2\theta_{13} = 0.086 \pm 0.051 \neq 0 \text{ at } 1.9\sigma$ Daya Bay: $\sin^2 2\theta_{13} = 0.092 \pm 0.017 \neq 0 \text{ at } 5.2\sigma$ RENO: $\sin^2 2\theta_{13} = 0.113 \pm 0.023 \neq 0 \text{ at } 4.9\sigma$

Double Chooz: $\sin^2 2\theta_{13} = 0.086 \pm 0.051 \neq 0$ at 1.9σ Daya Bay: $\sin^2 2\theta_{13} = 0.092 \pm 0.017 \neq 0$ at 5.2σ RENO: $\sin^2 2\theta_{13} = 0.113 \pm 0.023 \neq 0$ at 4.9σ

statistics experts, please close your eyes:

Double Chooz: $\sin^2 2\theta_{13} = 0.086 \pm 0.051 \neq 0$ at 1.9σ Daya Bay: $\sin^2 2\theta_{13} = 0.092 \pm 0.017 \neq 0$ at 5.2σ RENO: $\sin^2 2\theta_{13} = 0.113 \pm 0.023 \neq 0$ at 4.9σ

statistics experts, please close your eyes:

 $\sqrt{1.9^2 + 5.2^2 + 4.9^2} \simeq 7.4$

non-zero θ_{13} ruled out at 7.7σ

Machado, Minakata, Nunokawa, Zukanovich Funchal

Gonzalez-Garcia, Maltoni, Salvado,TS, in prep.

2

T. Schwetz

Comparing 2011 evidence for $\sin^2\theta_{13} > 0$...

 $sin^2\theta_{13} = 0.021 \pm 0.007$ (old reactor fluxes) $sin^2\theta_{13} = 0.025 \pm 0.007$ (new reactor fluxes)

... with new (2012) SBL reactor data:

Double Chooz (far detector): $sin^2\theta_{13} = 0.022 \pm 0.013$ Daya Bay (near + far detectors): $sin^2\theta_{13} = 0.024 \pm 0.004$ RENO (near + far detectors): $sin^2\theta_{13} = 0.029 \pm 0.006$

we find a spectacular agreement!

Gianluigi Fogli

European Strategy for Neutrino Oscillation Physics, CERN, May 13, 2012

$$\begin{split} \sin^2 2\theta_{13} &= 0.096 \pm 0.040 & \text{Minakata et al.} \\ \sin^2 2\theta_{13} &= 0.094 \pm 0.046 & \text{Fogli, Lisi et al.} \\ \sin^2 2\theta_{13} &= 0.086 \pm 0.036 & \text{Gonzalez-Garcia et al.} \\ \sin^2 2\theta_{13} &= 0.103 \pm 0.060 & \text{Tortola et al.} \end{split}$$

- 3σ -precision about 40 %
- mean is $\theta_{13} = 8.8^{\circ}$ \wedge
- astonishingly close to $\sin \theta_C / \sqrt{2}$!
- astonishingly close to $\sqrt{m_s/m_b}$?
- $\sin^2 \theta_{13} = 0$ ruled out by $\gtrsim 7\sigma$
- precision dominated by reactors

Remarks

- open questions:
 - θ_{23} : non-maximal? octant?
 - mass ordering: normal? inverted?
 - CP phase(s): δ ? Majorana phases?
 - neutrino mass scale?
 - neutrino nature?
- hierarchy seems possible within 1-2 decades
- full CP coverage not without new facilities (not necessarily easier with large θ_{13})
- next generation experiments presumably not able to do it individually
- far future: β-beams? neutrino factory?

 $heta_{13}$: phenomenological aspects minimal flavor violation in the lepton sector (Cirigliano, Grinstein, Isidori, Wise) $\mathrm{BR}(\mu \to e\gamma) \propto |(m_{\nu}m_{\nu}^{\dagger})_{e\mu}|^2$

this quantity can be zero if and only if CP conservation and

$$|U_{e3}| = \frac{1}{2} \frac{R \sin 2\theta_{12} \cot \theta_{23}}{1 \mp R \sin^2 \theta_{12}} \simeq 0.014$$

With large θ_{13} , the decay is guaranteed!

Chakrabortty, Ghosh, W.R.

Lower limit on $\mu \to e\gamma$

explicitly realized in type II seesaw with Higgs triplet

Chakrabortty, Ghosh, W.R.

Model impact...

Xing, 1106.3244; Qui, Ma, 1106.3284; He, Zee, 1106.4359; Zheng, Ma, 1106.4040; Zhou, 1106.4808; Araki, 1106.5211; Haba, Takahashi, 1106.5926; Morisi, Patel, Peinado, 1107.0696, Chao, Zheng, 1107.0738; Zhang, Zhou, 1107.1097; Chu, Dhen, Hambye, 1107.1589; Toorop, Feruglio, Hagedorn, 1107.3486; Antusch, Maurer, 1107.3728; Rodejohann, Zhang, Zhou, 1107.3970; Ahn, Cheng, Oh, 1107.4549; Marzocca, Petcov, Romanino, Spinrath, 1108.0614; Ge, Dicus, Repko, 1108.0964; Riazuddin, 1108.1469; Ludl, Morisi, Peinado, 1109.3393; Verma, 1109.4228; Meloni, 1110.5210; Kitabayashi, Yasue, 1110.5162; He, Majee, 1111.2293; Rashed, 1111.3072; Buchmuller, Domcke, Schmitz, 1111.3872; King, Luhn, 1112.1959; Eby, Frampton, 1112.2675; Heeck, Rodejohann, 1112.3628; Gupta, Joshipura, Patel, 1112.6113; Damanik, arXiv:1201.2747; Ding, 1201.3279; Ishimori, Kobayashi, 1201.3429; Dev, Gautam, Singh, 1201.3755; Ahn, Okada, 1201.4436; Rodejohann, Tanimoto, Watanabe, 1201.4936; Dev, Dutta, Mohapatra, Severson, 1202.4012; BenTov, Zee, 1202.4234; Zhang, Ma, 1202.4258; Dorame, Morisi, Peinado, Valle, Rojas, 1203.0155; Dev, Kumar, Verma, Gupta, Gautam, 1203.1403; Cooper, King, Luhn, 1203.1324; Zhang, Zheng, Ma, 1203.1563; Siyeon, 1203.1593; Xing, 1203.1672; Wu, 1203.2382; Branco, Felipe, Joaquim, Serodio, 1203.2646; He, Xu, 1203.2908; Zhang, Ma, 1203.2906; Meloni, 1203.3126; Ahn, Kang, 1203.4185; Fritzsch, 1203.4460; Varzielas, Ross, 1203.6636; de Gouvea, Murayama, 1204.1249; Fukugita, Shimizu, Tanimoto, Yanagida, 1204.2389; Ishimori, Khalil, Ma, 1204.2705; Meloni, Blankenburg, 1204.2706; Minkowski, 1204.4376; Kitabayashi, Yasue, 1204.4523; Zhang, Ma, 1204.6604; King, 1205.0506; Zhou, 1205.0761; Ma, 1205.0766; Antusch, Gross, Maurer, Sluka, 1205.1051; Adhikary, Chakraborty, Ghosal, 1205.1355; Harigaya, Ibe, Yanagida, 1205.2198; Hagedorn, King, Luhn, 1205.3114...

What's that good for?

Predictions of All 63 Models

Impact on flavor symmetry models

Almost all models, $\mathcal{O}(500)$, were designed to generate tri-bimaximal mixing:

$$U_{\rm TBM} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0\\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}}\\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} \end{pmatrix}$$

Harrison, Perkins, Scott (2002)

corresponding to

 $\begin{aligned} \sin^2 \theta_{12} &= \frac{1}{3} & \text{a bit outside } 1\sigma \\ \sin^2 \theta_{23} &= \frac{1}{2} & \text{well within } 1\sigma \\ \sin^2 \theta_{13} &= 0 & \text{wrong by } \gtrsim 7\sigma \end{aligned}$

those models typically base on A_4

- smallest group with 3-dim irrep.
- has 3 one-dimensional irreps. 1, 1', 1"
- angle between two faces: $\alpha = 2 \theta_{\text{TBM}}$, where $\sin^2 \theta_{\text{TBM}} = \frac{1}{3}$

The Zoo (of A_4 models)

Type	L_i	ℓ^c_i	$ u_i^c$	Δ	References
A1				-	$[1-14]$ $[15]^{\#}$
A2	<u>3</u>	$\underline{1},\underline{1}',\underline{1}''$	-	$\underline{1},\underline{1}',\underline{1}'',\underline{3}$	[16-18]
A3				$\underline{1}, \underline{3}$	[19]
B1	3	1 1' 1"	3	-	$[4, 20 - 27]^{\#}$ $[28 - 30]^{*}$ $[31 - 45]$
B2	2	±, ± , ±	2	$\underline{1}, \underline{3}$	$[46]^{\#}$
C1				₩	[2, 47, 48]
C2	3	3	_	<u>1</u>	$[49, 50] \ [51]^{\#}$
C3	2	<u>u</u>		$\underline{1}, \underline{3}$	[52]
C4				$\underline{1}, \underline{1}', \underline{1}'', \underline{3}$	[53]
D1				2	$[54, 55]^{\#}$ $[56, 57]^*$ $[58]$
D2	3	3	3	1	[59] [60]*
D3	~	ě.	i de la companya de l	$\underline{1}'$	$[61]^*$
D4				$\underline{1}', \underline{3}$	$[62]^*$
Е	<u>3</u>	<u>3</u>	$\underline{1},\underline{1}',\underline{1}''$.	[63, 64]
F	$\underline{1},\underline{1}',\underline{1}''$	<u>3</u>	<u>3</u>	$\underline{1} \text{ or } \underline{1}'$	[65]
G	<u>3</u>	$\underline{1},\underline{1}',\underline{1}''$	$\underline{1},\underline{1}',\underline{1}''$	5	[66]
Н	<u>3</u>	1, 1, 1	-	-	[67]
Ι	<u>3</u>	<u>1, 1, 1</u>	$\underline{1}, \underline{1}, \underline{1}$		[68]*
J	<u>3</u>	1, 1, 1	3	-	[12, 39, 69, 70]
Κ	<u>3</u>	$\underline{1}, \underline{1}, \underline{1}$	$\underline{1}, \underline{1}$	1	[71]*
L	<u>3</u>	<u>1, 1, 1</u>	1	2	[72]*
М	$\underline{1}, \underline{1}', \underline{1}''$	$\underline{1}, \underline{1}'', \underline{1}'$	$\underline{3}, \underline{1}$	-	[73, 74]
Ν	$\underline{1}, \underline{1}', \underline{1}''$	$\underline{1},\underline{1}'',\underline{1}'$	$\underline{3}, \underline{1}', \underline{1}''$	=	[75]

Barry, W.R., updated regularly on

http://www.mpi-hd.mpg.de/personalhomes/jamesb/Table_A4.pdf

In a model one has to decide which fermions transform as what:

Field	l	e^{c}	μ^{c}	$ au^c$	$h_{u,d}$	arphi	arphi'	ξ	$arphi_0$	$arphi_0'$	ξ_0	θ
A_4	3	1	1″	1′	1	3	3	1	3	3	1	1
Z_3	ω	ω^2	ω^2	ω^2	1	1	ω	ω	1	ω	ω	1
$U(1)_{ m FN}$	0	4	2	0	0	0	0	0	0	0	0	-1
$U(1)_R$	1	1	1	1	0	0	0	0	2	2	2	0

Altarelli, Feruglio

Due to VEV alignment, A_4 is broken to

- Z_2 in m_{ν} from $\varphi' = (v', v', v')$
- Z_3 in m_ℓ from $\varphi = (v, 0, 0)$
- accidental μ - τ symmetry \Rightarrow two Z_2 fix m_{ν} completely

Impact on flavor symmetry models

now θ_{13} is non-zero and large!

- corrections to TBM are naturally occurring in flavor symmetry models
- but: give similar corrections to ALL ANGLES...
- possibilities:
 - tune them to have $\delta \theta_{13} \gg \delta \theta_{12}$
 - start with non-zero θ_{13}

Alternative I: flavor symmetries and non-zero U_{e3} $G_f = \Delta(96)$, generated by $S^2 = (ST)^3 = T^8 = (ST^{-1}ST)^3 = 1$ with $S = \frac{1}{2} \begin{pmatrix} 0 & \sqrt{2} & \sqrt{2} \\ \cdot & -1 & 1 \\ \cdot & \cdot & -1 \end{pmatrix}$ and $T = \begin{pmatrix} e^{6i\pi/4} & 0 & 0 \\ \cdot & e^{7i\pi/4} & 0 \\ \cdot & \cdot & e^{3i\pi/4} \end{pmatrix}$

assumption (1): charged leptons invariant under $G_e = Z_3$; neutrinos under $G_{\nu} = Z_2 \times Z_2$

assumption (2): $G_e = ST$ and $G_\nu = \{S, ST^4ST^4\}$

$$|U| = \sqrt{\frac{1}{3}} \begin{pmatrix} \frac{1}{2}(\sqrt{3}+1) & 1 & \frac{1}{2}(\sqrt{3}-1) \\ \frac{1}{2}(\sqrt{3}-1) & 1 & \frac{1}{2}(\sqrt{3}+1) \\ 1 & 1 & 1 \end{pmatrix}$$

Toorop, Feruglio, Hagedorn

Alternative II:
$$|U_{e3}| = \theta_C / \sqrt{2}$$
 from GUTs

$$U_{\nu} = \begin{pmatrix} * & * & 0 \\ * & * & \sqrt{\frac{1}{2}} \\ * & * & \sqrt{\frac{1}{2}} \end{pmatrix} \text{ and } U_{\ell} = \begin{pmatrix} 1 & \lambda & 0 \\ -\lambda & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow |U_{e3}| = \frac{\lambda}{\sqrt{2}}$$
natural framework: $m_{up} \simeq$ diag and relate down quarks to charged leptons

$$Y_d = \begin{pmatrix} d & b \\ a & c \end{pmatrix} \Rightarrow \begin{cases} m_{\ell} = \begin{pmatrix} c_d d & c_b b \\ c_a a & c_c c \\ m_{\ell} = \begin{pmatrix} c_d d & c_a a \\ c_b b & c_c c \end{pmatrix} \text{ Pati-Salam } \Rightarrow |U_{e3}| = \left|\frac{c_e}{c_b}\right| \frac{\theta_C}{\sqrt{2}}$$

$$SU(5) \Rightarrow |U_{e3}| = \left|\frac{c_a}{c_b}\right| \frac{\theta_C}{\sqrt{2}}$$
Clebsch-Gordan factors depending on GUT breaking

Antusch et al.

Alternative III: Gatto-Sartori-Tonin for leptons

$$\sqrt{\frac{\Delta m_{\odot}^2}{\Delta m_{\rm A}^2}} = 0.160\dots 0.190 \quad \leftrightarrow \quad |U_{e3}| = 0.122\dots 0.190$$

can be arranged in flavor symmetry models, e.g. S_3

	($\overline{L_1}, \overline{L_2})$	$\overline{L_3}$ (ι	(u_{R_1}, u_{R_2})	e_R	μ	R	$ au_R$	$(\phi_1,\phi_2$))	ζ
	S_3	2^*	$1_{ m S}$	2	1_{S}	1	\mathbf{S}	$1_{ m S}$	2	1	S
	Z_3	ω	ω	ω	ω	_	[ω^2	ω	ú	<u>ر</u>
			,								
	(L_1, L_2)	L_3	(u_{R_1}, u_{R_2})) (e_R,μ_I)	R) 7	Γ_R	η_1^-	η_2^-	η_3^+	η_4^-	(ξ_1^+,ξ_2^+)
D_4	2	1_1	2	2		1_{1}	1_1	1_2	$_{2}$ 1 ₃	1_4	2
Z_2	+	+	+	_		+	_	+	· +	_	+
			WB	Tanimot	o Wa	atar	abe				

in 3-flavor framework: relations receive order one factors

Example, $m_1 = 0$ and $(m_{\nu})_{e\tau} = 0$:

$$|U_{e3}| \simeq \frac{1}{2} \sqrt{\frac{\Delta m_{\odot}^2}{\Delta m_A^2}} \sin 2\theta_{12} \tan \theta_{23} = 0.084^{+0.041}_{-0.027}$$

W.R., Tanimoto, Watanabe

Summary

 $|U| = \begin{pmatrix} 0.779 \dots 0.848 & 0.510 \dots 0.604 & 0.122 \dots 0.190 \\ 0.183 \dots 0.568 & 0.385 \dots 0.728 & 0.613 \dots 0.794 \\ 0.200 \dots 0.576 & 0.408 \dots 0.742 & 0.589 \dots 0.775 \end{pmatrix}$

 $|V| = \begin{pmatrix} 0.97428 \pm 0.00015 & 0.2253 \pm 0.0007 & 0.00347^{+0.00016}_{-0.00012} \\ 0.2252 \pm 0.0007 & 0.97345^{+0.00015}_{-0.00016} & 0.0410^{+0.0011}_{-0.0007} \\ 0.00862^{+0.00026}_{-0.00020} & 0.0403^{+0.0011}_{-0.0007} & 0.999152^{+0.000030}_{-0.00045} \end{pmatrix}$

- precision
- unitarity
- CP
- test all elements directly

Summary

- $\theta_{13} \neq 0$ at $\gtrsim 7\sigma$
- factor $\lesssim 2$ below Chooz limit
- makes it possible to test:
 - mass ordering
 - CP violation
 - impact on planing of next generation experiments
 - impact on model building
- no sign new physics (except for sterile neutrinos)

Alternatives to TBM: focus on θ_{12}

• Golden Ratio 1: $\cot \theta_{12} = \varphi = (1 + \sqrt{5})/2 \Rightarrow \sin^2 \theta_{12} \simeq 0.276 \iff A_5$

Cartesian coordinates of 12 icosahedron vertices: $(0, \pm 1, \pm \varphi)$ $(\pm 1, \pm \varphi, 0)$ $(\pm \varphi, 0, \pm 1)$

(Datta, Ling, Ramond; Kajiyama, Raidal, Strumia; Everett, Stuart)

• Golden Ratio 2: $\cos \theta_{12} = \varphi/2 \Rightarrow \sin^2 \theta_{12} = \sin^2 \pi/5 \simeq 0.345 \iff D_{10}$

$$\overline{\mathrm{AD}} = \varphi \,\overline{\mathrm{AB}}$$

(W.R., Adulpravitchai, Blum, W.R.)

Degeneracies

Expand 3 flavor oscillation probabilities in terms of $R = \Delta m_{\odot}^2 / \Delta m_A^2$ and $|U_{e3}|$:

$$P(\nu_e \to \nu_\mu) \simeq \sin^2 2\theta_{13} \, \sin^2 \theta_{23} \, \frac{\sin^2 (1 - \hat{A})\Delta}{(1 - \hat{A})^2} + R^2 \, \sin^2 2\theta_{12} \, \cos^2 \theta_{23} \frac{\sin^2 \hat{A}\Delta}{\hat{A}^2}$$

 $+\sin\delta\sin2\theta_{13} \mathbf{R} \sin2\theta_{12} \cos\theta_{13} \sin2\theta_{23} \sin\Delta \frac{\sin\hat{A}\Delta\sin(1-\hat{A})\Delta}{\hat{A}(1-\hat{A})}$

$$+\cos\delta\sin 2\theta_{13} \ R \ \sin 2\theta_{12} \ \cos\theta_{13} \ \sin 2\theta_{23} \ \cos\Delta \frac{\sin\hat{A}\Delta \ \sin(1-\hat{A})\Delta}{\hat{A}(1-\hat{A})}$$

with
$$\hat{A}=2\sqrt{2}\,G_F\,n_e\,E/\Delta m_{
m A}^2$$
 and $\Delta=rac{\Delta m_{
m A}^2}{4\,E}\,L$

- $\theta_{23} \leftrightarrow \pi/2 \theta_{23}$ degeneracy
- θ_{13} - δ degeneracy
- δ -sgn $(\Delta m_{\rm A}^2)$ degeneracy

Solutions: more channels, different L/E, high precision,...

Is the PMNS matrix 4×4 ?

Motivation

- particle physics
 - LSND/MiniBooNE
 - Gallium experiments
 - reactor anomaly
- cosmology
 - CMB
 - BBN
- astrophysics
 - *r*-process nucleosynthesis in supernovae

Light Sterile Neutrinos: A White Paper

K. N. Abazajian^{a, 1} M. A. Acero,² S. K. Agarwalla,³ A. A. Aguilar-Arevalo,² C. H. Albright,^{4,5} S. Antusch,⁶ C. A. Argüelles,⁷ A. B. Balantekin,⁸ G. Barenboim^a,³ V. Barger,⁸ P. Bernardini,⁹ F. Bezrukov,¹⁰ O. E. Bjaelde,¹¹ S. A. Bogacz,¹² N. S. Bowden,¹³ A. Boyarsky,¹⁴ A. Bravar,¹⁵ D. Bravo Berguño,¹⁶ S. J. Brice,⁵ A. D. Bross,⁵ B. Caccianiga,¹⁷ F. Cavanna,^{18,19} E. J. Chun,²⁰ B. T. Cleveland,²¹ A. P. Collin,²² P. Coloma,¹⁶ J. M. Conrad,²³ M. Cribier,²² A. S. Cucoanes,²⁴ J. C. D'Olivo,² S. Das,²⁵ A. de Gouvêa,²⁶ A. V. Derbin,²⁷ R. Dharmapalan,²⁸ J. S. Diaz,²⁹ X. J. Ding,¹⁶ Z. Djurcic,³⁰ A. Donini,^{31,3} D. Duchesneau,³² H. Ejiri,³³ S. R. Elliott,³⁴ D. J. Ernst, ³⁵ A. Esmaili, ³⁶ J. J. Evans, ^{37, 38} E. Fernandez-Martinez, ³⁹ E. Figueroa-Feliciano, ²³ B. T. Fleming^a,¹⁸ J. A. Formaggio^a,²³ D. Franco,⁴⁰ J. Gaffiot,²² R. Gandhi,⁴¹ Y. Gao,⁴² G. T. Garvey,³⁴ V. N. Gavrin,⁴³ P. Ghoshal,⁴¹ D. Gibin,⁴⁴ C. Giunti,⁴⁵ S. N. Gninenko,⁴³ V. V. Gorbachev,⁴³ D. S. Gorbunov,⁴³ R. Guenette,¹⁸ A. Guglielmi,⁴⁴ F. Halzen,^{46,8} J. Hamann,¹¹ S. Hannestad,¹¹ W. Haxton,^{47,48} K. M. Heeger,⁸ R. Henning,^{49,50} P. Hernandez,³ P. Huber^b,¹⁶ W. Huelsnitz,^{34,51} A. Ianni,⁵² T. V. Ibragimova,⁴³ Y. Karadzhov,¹⁵ G. Karagiorgi,⁵³ G. Keefer,¹³ Y. D. Kim,⁵⁴ J. Kopp^a,⁵ V. N. Kornoukhov,⁵⁵ A. Kusenko,^{56,57} P. Kyberd,⁵⁸ P. Langacker,⁵⁹ Th. Lasserre^a,^{22,40} M. Laveder,⁶⁰ A. Letourneau,²² D. Lhuillier,²² Y. F. Li,⁶¹ M. Lindner,⁶² J. M. Link^b,¹⁶ B. L. Littlejohn,⁸ P. Lombardi,¹⁷ K. Long,⁶³ J. Lopez-Pavon,⁶⁴ W. C. Louis^a,³⁴ L. Ludhova,¹⁷ J. D. Lykken,⁵ P. A. N. Machado,^{65,66} M. Maltoni,³¹ W. A. Mann,⁶⁷ D. Marfatia,⁶⁸ C. Mariani,^{53,16} V. A. Matveev,^{43,69} N. E. Mavromatos,^{70,39} A. Melchiorri,⁷¹ D. Meloni,⁷² O. Mena,³ G. Mention,²² A. Merle,⁷³ E. Meroni,¹⁷ M. Mezzetto,⁴⁴ G. B. Mills,³⁴ D. Minic,¹⁶ L. Miramonti,¹⁷ D. Mohapatra,¹⁶ R. N. Mohapatra,⁵¹ C. Montanari,⁷⁴ Y. Mori,⁷⁵ Th. A. Mueller,⁷⁶ H. P. Mumm,⁷⁷ V. Muratova,²⁷ A. E. Nelson,⁷⁸ J. S. Nico,⁷⁷ E. Noah,¹⁵ J. Nowak,⁷⁹ O. Yu. Smirnov,⁶⁹ M. Obolensky,⁴⁰ S. Pakvasa,⁸⁰ O. Palamara,^{18,52} M. Pallavicini,⁸¹ S. Pascoli,⁸² L. Patrizii,⁸³ Z. Pavlovic,³⁴ O. L. G. Peres,³⁶ H. Pessard,³² F. Pietropaolo,⁴⁴ M. L. Pitt,¹⁶ M. Popovic,⁵ J. Pradler,⁸⁴ G. Ranucci,¹⁷ H. Ray,⁸⁵ S. Razzague,⁸⁶ B. Rebel,⁵ R. G. H. Robertson,^{87,78} W. Rodejohann^a,⁶² S. D. Rountree,¹⁶ C. Rubbia,^{39,52} O. Ruchayskiy,³⁹ P. R. Sala,¹⁷ K. Scholberg,⁸⁸ T. Schwetz^a,⁶² M. H. Shaevitz,⁵³ M. Shaposhnikov,⁸⁹ R. Shrock,⁹⁰ S. Simone,⁹¹ M. Skorokhvatov,⁹² M. Sorel,³ A. Sousa,⁹³ D. N. Spergel,⁹⁴ J. Spitz,²³ L. Stanco,⁴⁴ I. Stancu,²⁸ A. Suzuki,⁹⁵ T. Takeuchi,¹⁶ I. Tamborra,⁹⁶ J. Tang.^{97,98} G. Testera.⁸¹ X. C. Tian.⁹⁹ A. Tonazzo.⁴⁰ C. D. Tunnell.¹⁰⁰ R. G. Van de Water.³⁴ L. Verde,¹⁰¹ E. P. Veretenkin,⁴³ C. Vignoli,⁵² M. Vivier,²² R. B. Vogelaar,¹⁶ M. O. Wascko,⁶³ J. F. Wilkerson,^{49,102} W. Winter,⁹⁷ Y. Y. Y. Wong^a,²⁵ T. T. Yanagida,⁵⁷ O. Yasuda,¹⁰³ M. Yeh,¹⁰⁴ F. Yermia,²⁴ Z. W. Yokley,¹⁶ G. P. Zeller,⁵ L. Zhan,⁶¹ and H. Zhang⁶²

¹University of California, Irvine

²Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México

³Instituto de Fisica Corpuscular, CSIC and Universidad de Valencia

⁴Northern Illinois University

⁵Fermi National Accelerator Laboratory

⁶University of Basel

^aSection editor

^bEditor and corresponding author (pahuber@vt.edu and jmlink@vt.edu)

Remarks

- majority of experiments does not require sterile neutrinos
- oscillation experiments: $\Delta m^2 \simeq 1 \ {\rm eV}^2$ vs. cosmology: $m_s \lesssim 1 \ {\rm eV}$
- appearance-disappearance tension
- all anomalies explained by the same thing?
- are they all real?

	$\Delta m^2_{41} [\mathrm{eV}^2]$	$ U_{e4} $	$ U_{\mu4} $	$\Delta m_{51}^2 [\mathrm{eV}^2]$	$ U_{e5} $	$ U_{\mu 5} $				
3+2/2+3	0.47	0.128	0.165	0.87	0.138	0.148				
1+3+1	0.47	0.129	0.154	0.87	0.142	0.163				
or $\Delta m^2_{41} = 1.78 \text{ eV}^2$ and $ U_{e4} ^2 = 0.151$										
Kopp, Maltoni, Schwetz										

Reactor anomaly

- fission yield per isotope
- β decay branching ratios (allowed, forbidden)
- β shape (corrections: QED, weak magnetism, Coulomb)
- extraction from electron spectra

θ_{13} : phenomenological aspects

possibility to distinguish normal vs. inverted with supernovas

Fluxes arriving at the Earth

$$F_{\nu_e} = \rho \; F^0_{\nu_e} + (1-\rho) \; F^0_{\nu_x} \;, \qquad F_{\bar{\nu}_e} = \bar{\rho} \; F^0_{\bar{\nu}_e} + (1-\bar{\rho}) \; F^0_{\nu_x}$$

<i>p</i> at low, intermediate, high energies										
	Phase A ($L_{\nu_e} \gtrsim L_{\nu_x}$)Phase C ($L_{\nu_e} \gtrsim L_{\nu_x}$)									
NH	$\sin^2 \theta_{13} \gtrsim 10^{-3}$ $\sin^2 \theta_{13} \le 10^{-5}$	0 s ²	0 s ²	0 s ²	0 s ²	0 s ²	<i>s</i> ²			
	$\frac{\sin^2 \theta_{13} \gtrsim 10}{\sin^2 \theta_{13} \gtrsim 10^{-3}}$	5 ²	0	0	s ²	0	$C^2 (s^2)$			
IH	$\sin^2 heta_{13}\lesssim 10^{-5}$	s ²	0	0	<i>s</i> ²	0	$C^{2}(s^{2})$			

\bar{p} at low, intermediate, high energies										
Phase A ($L_{\nu_e} \gtrsim L_{\nu_x}$)Phase C ($L_{\nu_e} \gtrsim L_{\nu_x}$)										
	$\sin^2 heta_{13}\gtrsim 10^{-3}$	<i>C</i> ²	<i>c</i> ²	C ²	<i>c</i> ²	C ²	0			
	$\sin^2 heta_{13}\lesssim 10^{-5}$	c^2	c^2	c^2	<i>c</i> ²	C ²	0			
	$\sin^2 heta_{13}\gtrsim 10^{-3}$	0	<i>c</i> ²	C ²	0	<i>c</i> ² [0]	<i>s</i> ² (0)			
	$\sin^2 heta_{13}\lesssim 10^{-5}$	<i>C</i> ²	0	0	<i>c</i> ²	0 [<i>c</i> ²]	<i>s</i> ² (<i>c</i> ²)			

$$s^2 \equiv \sin^2 heta_{12}, c^2 \equiv \cos^2 heta_{12}$$

(), []: non-adiabatic swaps

・ロ・・母・・ヨ・・ヨ・ しょうくろ

Dighe