Heavy Quarkonium Production and NRQCD

Jian-Xiong Wang Institute of High Energy, Chinese Academy of Science, Beijing

> Flavor Physics and CP Violation 2012 May 21, 2012. Hefei, CHINA

2 J/psi production at the B factories

- double charmonium production
- Inclusive J/ψ production

3 J/ψ production at the Tevatron and LHC • QCD Correction to color-singlet J/ψ production • QCD Correction to color-octet J/ψ production

Other improtant Progress

Introduction

- Perturbative and non-perturbative QCD, hadronization, factorization
- Color-singlet and Color-octet mechanism was proposed based on NRQCD since b and c-quark is heavy.
- Clear signal to detect J/ψ .
- heavy quarkonium production is a good place to testify these theoretical framework.
- J/ψ photoproduction at HERA
- J/ψ production at the B factories
- J/ψ production and polarization at the Tevatron
- J/ψ production at the LHC
- LO theoretical predication were given before more than 15 years
- NLO theoretical predications were given within last 5 years.
- It seems that the QCD NLO calculations can adequately describe the experimental data.
- But there are still many difficulties.

3

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

 $e^+e^- \rightarrow J/\psi + \eta_c$

Experimantal Data

BELLE: $\sigma[J/\psi + \eta_c] \times B^{\eta_c} \geq 2] = (25.6 \pm 2.8 \pm 3.4)$ fb BARAR: $\sigma[J/\psi + \eta_c] \times B^{\eta_c} \geq 2] = (17.6 \pm 2.8^{+1.5}_{-2.1})$ fb [Abe et al.(2002), Pakhlov(2004), Aubert et al.(2005)]

5/29

LO NRQCD Predictions

 $2.3\sim5.5~{\rm fb}$ [Braaten and Lee(2003), Liu et al.(2003), Hagiwara et al.(2003)]

$$e^+e^-
ightarrow J/\psi + \eta_c$$

Experimantal Data

BELLE: $\sigma[J/\psi + \eta_c] \times B^{\eta_c} \geq 2] = (25.6 \pm 2.8 \pm 3.4)$ fb BARAR: $\sigma[J/\psi + \eta_c] \times B^{\eta_c} \geq 2] = (17.6 \pm 2.8^{+1.5}_{-2.1})$ fb [Abe et al.(2002), Pakhlov(2004), Aubert et al.(2005)]

LO NRQCD Predictions

 $2.3\sim5.5~{\rm fb}$ [Braaten and Lee(2003), Liu et al.(2003), Hagiwara et al.(2003)]

NLO QCD corrections

$$\begin{split} & \mathcal{K} \equiv \sigma^{NLO}/\sigma^{LO} \sim 2 \\ & \text{First given in PRL96, (2006) Y. J. Zhang, Y. J. Gao and K. T. Chao} \\ & \text{Confirmed by the analytic result in PRD77, (2008), B. Gong and J. X. Wang} \end{split}$$

Relativistic corrections

 $K\sim 2$

PRD67, (2007) E. Braaten and J. Lee AIP Conf. Proc. (2007), G.T. Bodwin, D. Kang, T. Kim, J. Lee and C. Yu PRD75, (2007), Z. G. He, Y. Fan and K. T. Chao PRD77,(2008),G.T. Bodwin, J. Lee and C. Yu

 $e^+e^-
ightarrow J/\psi + J/\psi$

Problem

LO NRQCD prediction indicates that the cross section of this process is large than that of $J/\psi + \eta_c$ production by a factor of 1.8, but no evidence for this process was found at the B factories. PRL90, (2003) G. T. Bodwin, E. Braaten and J. Lee PRD70, (2004), K. Abe, et al

 $e^+e^- \rightarrow J/\psi + J/\psi$

Problem

LO NRQCD prediction indicates that the cross section of this process is large than that of $J/\psi + \eta_c$ production by a factor of 1.8, but no evidence for this process was found at the B factories. PRL90, (2003) G. T. Bodwin, E. Braaten and J. Lee PRD70, (2004), K. Abe, et al

NLO QCD corrections

- \bullet Greatly decreased, with a K factor ranging from $-0.31\sim 0.25$ depending on the renormalization scale.
- Might explain the situation.

PRL100, (2008) B. Gong and J. X. Wang

LO NRQCD Predictions:

PRL76,(1996), E. Braaten and Y. C. Chen, PLB577,(2003), K.Y. Liu, Z.G. He and K.T. chao,

Experimental Data:

BARAR	$\sigma[e^+e^- ightarrow J/\psi + X] = (2.54 \pm 0.21 \pm 0.21) ~{ m pb}$
CLEO	$\sigma[e^+e^- ightarrow J/\psi + X] = (1.9 \pm 0.20) ~{ m pb}$
BELLE	$\sigma[e^+e^- ightarrow J/\psi + X] = (1.45 \pm 0.10 \pm 0.13) ~{ m pb}$
	$\sigma[e^+e^- \rightarrow J/\psi + c\bar{c} + X] = (0.87^{+0.21}_{-0.19} \pm 0.17) \text{ pb}$

[Aubert et al.(2001), Aubert et al.(2005), Briere et al.(2004), Abe et al.(2002a), Abe et al.(2002)]

New BELLE Data

$$\sigma[e^+e^- \to J/\psi + X] = (1.17 \pm 0.02 \pm 0.07) \text{ pb}$$

$$\sigma[e^+e^- \to J/\psi + c\bar{c}] = (0.74 \pm 0.08^{+0.09}_{-0.08}) \text{ pb}$$

$$\sigma[e^+e^- \to J/\psi + X_{\rm non-c\bar{c}}] = (0.43 \pm 0.09 \pm 0.09) \text{ pb}$$

[Pakhlov et al.(2009)]

$$\sigma^{(1)} = \sigma^{(0)} \left\{ 1 + \frac{\alpha_s(\mu)}{\pi} \left[a(\hat{s}) + \beta_0 \ln\left(\frac{\mu}{2m_c}\right) \right] \right\}$$

$m_c(GeV)$	$\alpha_s(\mu)$	$\sigma^{(0)}(pb)$	$a(\hat{s})$	$\sigma^{(1)}(pb)$	$\sigma^{(1)}/\sigma^{(0)}$
1.4	0.267	0.341	2.35	0.409	1.20
1.5	0.259	0.308	2.57	0.373	1.21
1.6	0.252	0.279	2.89	0.344	1.23

Consistent results from two group: PRL102, (2009) Y. Q. Ma, Y. J. Zhang and K. T. Chao PRL102, (2009) B. Gong and J. X. Wang

Relativistic Correction enchance results about a factor 1.3 from two group: PRD81, (2010) Z. G. He, Y. Fan and K. T. Chao PRD82, (2010). Y. Jia

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$e^+e^-
ightarrow J/\psi + c ar c$$

$$\sigma^{(1)} = \sigma^{(0)} \left\{ 1 + \frac{\alpha_s(\mu)}{\pi} \left[a(\hat{s}) + \beta_0 \ln\left(\frac{\mu}{2m_c}\right) \right] \right\}$$

$m_c(GeV)$	$\alpha_s(\mu)$	$\sigma^{(0)}(pb)$	$a(\hat{s})$	$\sigma^{(1)}(pb)$	$\sigma^{(1)}/\sigma^{(0)}$
1.4	0.267	0.224	8.19	0.380	1.70
1.5	0.259	0.171	8.94	0.298	1.74
1.6	0.252	0.129	9.74	0.230	1.78

Cross sections with different charm quark mass m_c with the renormalization scale $\mu = 2m_c$ and $\sqrt{s} = 10.6 \text{ GeV}$. The former result given by PRL98, (2007) Y. J. Zhang and K. T. Chao confirmed by PRD80, (2009) B. Gong and J. X. Wang

9/29

Use Brodsky, Lepage and Mackenzie (BLM) scale setting [Brodsky et al.(1983)]

$$\sigma^{(1)} = \sigma^{(0)}(\mu^*)[1 + rac{lpha_s(\mu^*)}{\pi}b(\hat{s})].$$

$m_c(GeV)$	$\alpha_s(\mu^*)$	$\sigma^{(0)}(pb)$	$b(\hat{s})$	$\sigma^{(1)}(pb)$	$\sigma^{(1)}/\sigma^{(0)}$	$\mu^*(GeV)$
1.4	0.348	0.381	3.77	0.540	1.42	1.65
1.5	0.339	0.293	4.31	0.429	1.47	1.72
1.6	0.332	0.222	4.90	0.337	1.52	1.79

Cross sections with different charm quark mass $\mathit{m_c}.$ The renormalization scale $\mu=\mu^*\sim \mathit{m_c}.$

Momentum distribution of inclusive J/ψ production with $\mu = \mu^*$ and $m_c = 1.4$ GeV is taken for the $J/\psi cc$ channel. The contribution from the feed-down of ψ' has been added to all curves by multiplying a factor of 1.29.

Momentum and angular distributions of inclusive J/ψ production.

The contribution from the feed-down of ψ' has been added to all curves by multiplying a factor of 1.29.

Polarization parameter α and angular distribution parameter A of J/ψ as functions of p.

$$\sigma[e^+e^- \to J/\psi + X_{\rm non-c\bar{c}}] = (0.43 \pm 0.09 \pm 0.09) \text{ pb}$$

$$\sigma[e^+e^- \rightarrow J/\psi + X_{\text{non}-c\bar{c}}]^{color-singleTh} > (0.43) \text{ pb}$$

$$\sigma[e^+e^- \rightarrow J/\psi + X_{\rm non-c\bar{c}}]^{color-octetTh} > (0.6) ~{\rm ph}$$

From the contribution of $e^+e^- \rightarrow J/\psi({}^1S_0^8, 3P_J^8) + g$ at NLO PRD81, (2010) Y. J. Zhang, Y. Q. Ma, K. Wang and K. T. Chao

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction

In last five years, there were a few very important progresses in the next-to-leading Order (NLO) QCD correction calculation:

- QCD Correction to color-singlet J/ψ production
- QCD Correction to color-singlet J/ψ polarization
- QCD Correction to color-octet $J/\psi({}^1S^8_0, {}^3S^8_1)$ production and polariozation
- QCD Correction to color-octet $J/\psi({}^1S_0^8, {}^3S_1^8, {}^3P_J^8)$ production
- QCD Correction to color-octet $J/\psi({}^1S^8_0, {}^3S^8_1, {}^3P^8_J)$ polarization
- QCD Correction to $\chi_{cJ}({}^{3}S_{1}^{8}, {}^{3}P_{J}^{1})$ production

Untill now, there are:

 p_t distribution of J/ψ yield for prompt J/ψ hadroproduction at QCD NLO p_t distribution of J/ψ polarization for direct J/ψ hadroproduction at QCD NLO

feeddown of χ_{cJ} about 20 - 30% to prompt J/ψ production and very improtant. We need:

 p_t distribution of J/ψ polarization for prompt J/ψ hadroproduction at QCD NLO

It is well known that the uncertainties in p_t distribution of charmonium hadroproduction yield from charm-quak mass m_c , NRQCD scale μ_{Λ} , renormalization scale μ_r and factorization scale μ_f are large at small p_t range. And recent work on relativistic correction to J/ψ hadroproduction shows that the correction is negtive and large at small p_t range $(p_t < 10 GeV)$. For large p_t range, the large logarithm term $ln(p_t/m_c)$ will appear even with the default choice of all the scales $\mu_r = \mu_f = p_t, \mu_A = m_c$ and it may ruin the result without proper treatment of this term. In the other side, it very clearly show in the previous fitting and also this fitting that the experimental data for $p_t < 7$ and $p_t > 15$ can not be represented very well simultaneously.

QCD Correction to color-singlet J/ψ production

P_t distribution of J/ψ production at QCD NLO was calculated in PRL98,252002 (2007), J. Campbell, F. Maltoni F. Tramontano

Some technique problems must be solved to calculate J/ψ polarization P_t distribution of J/ψ polarization at QCD NLO was calculated in PRL100,232001 (2008), B. Gong and J. X. Wang

$$\begin{split} \Upsilon \mbox{ polarization drastically changes from transverse polarization dominant at LO into longitudinal polarization dominant at NLO \\ P_t \mbox{ distribution of } \Upsilon \mbox{ polarization at QCD NLO was calculated with detail in } \\ \mbox{ PRD78 074011 (2008), B. Gong and J. X. Wang} \end{split}$$

Partly NNLO calculation for Υ production calculated by PRL101, 152001(2008), P. Artoisenet, John M. Campbell, J.P. Lansberg, F. Maltoni, F. Tramontano NLO QCD corrections to J/ψ production via S-wave color octet states

3 tree processes at LO At NLO $g(p_1) + g(p_2) \rightarrow J/\psi [{}^{1}S_0^{(8)}, {}^{3}S_1^{(8)}](p_3) + g(p_4),$ (267, 413) $g(p_1) + q(p_2) \rightarrow J/\psi [{}^{1}S_0^{(8)}, {}^{3}S_1^{(8)}](p_3) + q(p_4),$ (49, 111) $q(p_1) + \overline{q}(p_2) \rightarrow J/\psi [{}^{1}S_0^{(8)}, {}^{3}S_1^{(8)}](p_3) + g(p_4).$ (49, 111) Real Correction (8 processes at NLO) $gg \rightarrow J/\psi [{}^{1}S_{0}^{(8)}, {}^{3}S_{1}^{(8)}]gg, gg \rightarrow J/\psi [{}^{1}S_{0}^{(8)}, {}^{3}S_{1}^{(8)}]q\overline{q},$ $gq \rightarrow J/\psi [{}^{1}S_{0}^{(8)}, {}^{3}S_{1}^{(8)}]gq, \quad q\overline{q} \rightarrow J/\psi [{}^{1}S_{0}^{(8)}, {}^{3}S_{1}^{(8)}]gg,$ $q\overline{q} \rightarrow J/\psi \begin{bmatrix} 1S_0^{(8)}, 3S_1^{(8)} \end{bmatrix} q\overline{q}, \quad q\overline{q} \rightarrow J/\psi \begin{bmatrix} 1S_0^{(8)}, 3S_1^{(8)} \end{bmatrix} q'\overline{q}',$ $qq \rightarrow J/\psi [{}^{1}S_{0}^{(8)}, {}^{3}S_{1}^{(8)}] qq, \quad qq' \rightarrow J/\psi [{}^{1}S_{0}^{(8)}, {}^{3}S_{1}^{(8)}] qq',$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

19/29

To fit the Tevatron P_t distribution give more $\langle \mathcal{O}_8^\psi(\xi_0) \rangle = 0.075~{\rm GeV}^3$ and less $\langle \mathcal{O}_8^\psi(\xi_1) \rangle = 0.0021~{\rm GeV}^3$ than they are at LO fitting The experimental data with $p_t < 6$ GeV have to abandon PLB673:197,2009, Erratum-ibid.693:612,2010 , B. Gong X. Q. Li and J. X. Wang

Correction to color-octet J/ψ(¹S⁰₀, ³S³₁, ³P³₀) production was done recently and gave almost the same prediction for p_t distribution as before without calculation of polarization, by PRL 106, 042002,2011, Yan-Qing Ma, Kai Wang, Kuang-Ta Chao PRL 106, 022003,2011, Mathias Butenschoen, Bernd A. Kniehl

QCD Correction to color-octet $J/\psi({}^{1}S_{0}^{8}, {}^{3}S_{1}^{8}, {}^{3}P_{J}^{8})$ production and polarization

PRL 106, 042002,2011, Yan-Qing Ma, Kai Wang, Kuang-Ta Chao PRL 108, ?????,2012 Kuang-Ta Chao, Yan-Qing Ma, Hua-Sheng Shao, Kai Wang, Yu-Jie Zhang

21/29

3

QCD Correction to color-octet $J/\psi({}^{1}S_{0}^{8}, {}^{3}S_{1}^{8}, {}^{3}P_{J}^{8})$ production and polarization

PRL 108, 172002,2012, Mathias Butenschoen, Bernd A. Kniehl

Relativistic Correction to color-octet $J/\psi({}^{1}S_{0}^{8}, {}^{3}S_{1}^{8}, {}^{3}P_{J}^{8})$ production

ArXiv:1203.0207, gng-Zhi Xu, Yi-Jie Li, Kui-Yong Liu, and Yu-Jie Zhang

<ロ > < 合 > < 言 > < 言 > こ > < こ > へ ? 23/29

PRD 83:114021,2011, B. Gong, J. X. Wang and H. F. Zhang

4日 > 4日 > 4日 > 4日 > 4日 > 日 の Q (0)
24 / 29

ArXiv:1201.6012 Kai Wang, Yan-Qing Ma, Kuang-Ta Chao

The main point is to extended the fragmentation factorization from: one-parton fragment into hadron to: two-parton fragment into hadron There will be more fragmentation function needed in this scheme.

ArXiv 1109.1520, Zhong-Bo Kang, Jian-Wei Qiu and George Sterman

(日) (圖) (E) (E) (E)

26 / 29

ArXiv:1102.0118, B. Gong, R. Li and J. X. Wang

- For B-factories: NRQCD at NLO of α_s and v can well described J/ψ production data. strong constraint to **the values of color-octect matrix** element of $c\bar{c}({}^{1}S_{0}^{8}, 3P_{J}^{8})$ to almost zero. The dominant part $c\bar{c}({}^{3}S_{1}^{8})$ for hadronproduction is still there.
- The polarization problem for *J/psi* hadroproduction is still there even when the QCD NLO fitting and prediction are archived.
- The prediction on the polarization of prompt J/ ψ hadroproduction at QCD NLO is strongly needed.
- The more precision experimental measurements at LHC are needed to clarify the situation.
- More theoretical Progresses are needed on relativistic coorection, to solve the polarization pzzle.

Thank you!

<ロト < 部ト < 注ト < 注ト < 注 > 29 / 29

- K. Abe et al. (Belle), Phys. Rev. Lett. 89, 142001 (2002), hep-ex/0205104.
- P. Pakhlov (Belle) (2004), hep-ex/0412041.
- B. Aubert et al. (BABAR), Phys. Rev. D72, 031101 (2005), hep-ex/0506062.
- G. T. Bodwin, E. Braaten, and G. P. Lepage, Phys. Rev. **D51**, 1125 (1995).
- E. Braaten and J. Lee, Phys. Rev. D67, 054007 (2003), hep-ph/0211085.
- K.-Y. Liu, Z.-G. He, and K.-T. Chao, Phys. Lett. B557, 45 (2003), hep-ph/0211181.
- K. Hagiwara, E. Kou, and C.-F. Qiao, Phys. Lett. B570, 39 (2003), hep-ph/0305102.
- Y.-J. Zhang, Y.-j. Gao, and K.-T. Chao, Phys. Rev. Lett. **96**, 092001 (2006).

- B. Gong and J.-X. Wang, Phys. Rev. **D77**, 054028(2008).
- G. T. Bodwin, J. Lee and E. Braaten, Phys. Rev. Lett. **90**, 162001(2003a); Phys. Rev. Lett. **95**, 239901(E) (2005).
- K. Abe et al. (Belle), Phys. Rev. **D70**, 071102 (2004).
- B. Gong and J.-X. Wang, Phys. Rev. Lett. 100, 181803 (2008b), 0801.0648.
- K. Abe et al. (BELLE), Phys. Rev. Lett. 88, 052001 (2002a), hep-ex/0110012.
- B. Aubert et al. (BABAR), Phys. Rev. Lett. 87, 162002 (2001), hep-ex/0106044.
- R. A. Briere et al. (CLEO), Phys. Rev. **D70**, 072001 (2004).
- P. Pakhlov et al. (Belle Collaboration), Phys. Rev. D79, 071101 (2009).
- Y.-Q. Ma, Y.-J. Zhang, and K.-T. Chao, Phys. Rev. Lett. 102, 162002 (2009), 0812.5106.

- Y.-J. Zhang and K.-T. Chao, Phys. Rev. Lett. **98**, 092003 (2007).
- S. J. Brodsky, G. P. Lepage, and P. B. Mackenzie, Phys. Rev. D 28, 228 (1983).
- Z. G. He, Y. Fan and K. T. Chao, Phys. Rev. D 81, 054036 (2010) [arXiv:0910.3636 [hep-ph]].
- Y. Jia, arXiv:0912.5498 [hep-ph].
- Y. J. Zhang, Y. Q. Ma, K. Wang and K. T. Chao, Phys. Rev. D **81**, 034015 (2010) [arXiv:0911.2166 [hep-ph]].