### CERN Accelerator School

"Superconductivity for Accelerators"

Ettore Majorana Foundation and Centre for Scientific Culture Erice, Italy 24 April - 4 May, 2013

# Heat transfer and cooling techniques at low temperature

**Bertrand Baudouy** 

bertrand.baudouy@cea.fr

### **Outline**

• Heat transfer at low temperature

(Lecture 1)

- Conduction
- Radiation
- Convection
- Cooling techniques at low temperature

(Lecture 2)

- Different classifications of system with respect to cooling
- Different methods of cooling
- Some examples

BB, CERN Accelerator School 60 - Erice - April 25th May 4th 2013

### Heat transfer at low temperature (Lecture 1)

- Content
  - Review of different fundamental modes of heat transfer
  - Specificity to the low temperature domain
  - Some practical cases
  - Useful data and references
- · Not covered by this lecture
  - Thermodynamics
  - Properties of materials
  - Superfluid helium heat transfer
  - Production of cryogens
- Present until the end of the school, do not hesitate to ask.

BB, CERN Accelerator School 6 – Erice – April 25th May 4th 2013

# Cooling to low temperature (1/2)

- ullet Primary goal : maintain a system at a temperature T $\ll$  room temperature
  - Thermal stability in steady-state regime  $\rightarrow$   $T_{system} \approx constant$
  - Protecting your system against transient events  $\rightarrow T_{\text{system}} < T_{\text{max}}$
- · System defined by thermophysical properties
  - Density (kg/m³), Heat capacity (J/kg.K), Thermal conductivity (W/m.K)...
- System subjected to permanent heat input (heat losses), Qp
- Thermal radiation (room temperature to T<sub>system</sub>)
- Conduction through supports, current leads, ...
- Internal dissipation (Joule effect, AC losses, beam losses...)
- System subjected to transient heat perturbation, Q,
- Quench of a superconducting cavity or magnet
- ullet Cooling power provided,  $\mathbf{Q}_{\mathbf{R}}$
- In the system design at low temperature conditions
  - Minimize heat input : Minimization of the heat transfer at constant  $\Delta T$
  - Maximize heat extraction : Minimization of  $\Delta T$  at a constant heat transfer

BB, CERN Accelerator School 6 - Erice - April 25th May 4th 2013



# Cooling to low temperature (2/2)

- Three modes of heat transfer
  - Conduction: heat transferred in solid or fluid at rest

$$q = -k(\mathsf{T})\vec{\nabla}\mathsf{T}$$



- Convection: heat transferred by movement of fluid

$$q=hA(T_s-T_{_\infty})$$



- Radiation : Heat transferred by electromagnetic wave

$$q = \varepsilon.\sigma.(\mathsf{T_2}^4 - \mathsf{T_1}^4)$$





cea

B, CERN Accelerator School 60 - Erice - April 25th May 4th 2013

# **Outline** | Conduction

• Heat transfer at low temperature

(Lecture 1)

- Conduction
  - Fourrier's law
  - Thermal conductivity integral case of a support
  - Thermal resistance
  - Thermal contact resistance
  - Transient heat conduction
  - Conduction in liquid
  - Conduction in gas
- Radiation
- Convection

cea

BB, CERN Accelerator School 600 - Erice - April 25th May 4th 2013

# Conduction | Fourier's Law

- Heat transfer without mass transfer in solid, liquid or fluid at rest
- For steady-state regime : Fourier's law  $q = -k(T)\vec{\nabla} T$  Heat is flowing from the hot to the cold source.
- In 1D with constant geometry:  $q = -k(T)\frac{dT}{dx} \Rightarrow \frac{Q}{A} = \frac{1}{L}\int_{\tau_{cold}}^{\tau_{hot}} k(T) dT$



- In 1D with non constant geometry:  $q = -k(T)\frac{dT}{dx} \Rightarrow Q_0^L \frac{dx}{A} = \int_{T_{cold}}^{T_{hol}} k(T) dT$
- $\int k(T) dT$  is the integral conductivity. Very important since the thermal conductivity varies between room temperature and low temperature

BB, CERN A

BB, CERN Accelerator School 600 - Erice - April 25th May 4th 20

Conduction | Thermal conductivity integral

| Conduction | Thermal conductivity integral

| Course | C

### Conduction | Case of a support (1/2)

- Use of conductivity integral
  - Heat leak, temperature profile



- If the magnet is suspended by three rods of 304 stainless steel from the 300 K top flange
  - Rods :  $\emptyset$ =10 mm and L=1 m

$$Q_{4K} = \frac{A}{L} \int_{0.0}^{300} k_{SS}(T) dT = \frac{2.3610^{-4}}{1} 3.0710^{3} = 0.7 \text{ W}$$

- It corresponds to a consumption of 1 l/h of liquid helium
- · If the rods are made of
- Copper (RRR=20) with a conductivity integral of 1.26  $10^5$  W/m, then  $Q_{4K}$ ≈20 W
- G10 (Epoxy fiberglass tape) with an integral of 167 W/m, then  $Q_{4K} \approx 26$  mW



B, CERN Accelerator School 600 – Erice – April 25th May 4th 2013

300 K

# Conduction | Case of a support (2/2)

- To reduce the heat load on the helium bath
- Heat interception with another cold source at an intermediate constant temperature (thermalization)
- Boiling nitrogen or temperature regulated cold stage of cryocoolers
- If the interception is made with boiling nitrogen @ 77 K at 1/3 of the length from the top

$$- Q_{4K} = \frac{A}{L} \int_{4.2}^{77} k(T) dT = \frac{2.3610^{-4}}{0.75} 325 = 0.1 \text{ W}$$

which corresponds to a consumption of liquid helium divided by 7!

$$- Q_{77K} = \frac{A}{L} \int_{77}^{300} k(T) dT = \frac{2.3610^{-4}}{0.25} 2.7510^{3} = 2.6 \text{ W}$$

which corresponds to a consumption of liquid nitrogen of 0.06 l/h  $\,$ 

Q<sub>4K</sub>

• Optimization depends on many parameters such as the thermalization temperature, the properties of the materials, the geometry...



BB, CERN Accelerator School 6 - Erice - April 25th May 4th 2013

### Conduction | Thermal resistance (1/2)

• In the case of steady-state and without internal dissipation, a thermal resistance can be defined:



Heat flux tube based on the surface S<sub>1</sub> and S<sub>2</sub>

$$Q \int_{Z_1}^{Z_2} \frac{dz}{A(z)} = -\int_{T_1}^{T_2} k(T) dT = \overline{k}(T_1 - T_2) \Rightarrow R_{th} = \frac{T_1 - T_2}{Q} = \frac{1}{\overline{k}} \int_{Z_1}^{Z_2} \frac{dz}{A(z)} \left[ \frac{K}{W} \right]$$

- For a slab with constant section  $R_{th} = \frac{L}{\overline{k}A}$ , a cylinder  $R_{th} = \frac{\ln(R_2/R_1)}{\overline{k}2\pi L}$
- For a convective boundary  $R_{th} = \frac{1}{hA}$

# Conduction | Thermal resistance (2/2)

- Case of a composite wall,  $R_{th}$  are in series so  $R_{total} = \sum R_i$
- · Case of a composite wall with heat transfer coefficients at boundaries

$$Q = \frac{T_h - T_c}{\sum_i R_i} = A \frac{T_h - T_c}{\left( \frac{1}{h_h} + \left( \frac{L_1}{\bar{k}_1} \right) + \left( \frac{L_2}{\bar{k}_2} \right) + \left( \frac{L_3}{\bar{k}_3} \right) + \left( \frac{1}{h_c} \right)}$$

- In the case of parallel components  $-R_{th}$  are in parallel so  $1/R_{total} = \sum 1/R_i$
- Case of a composite (series/parallel) wall with heat transfer coefficients at boundaries

 $L_2 = L_3 \text{ and } A_2 = A_3 = \frac{A}{2}$ 

cold fluid

BB, CERN Accelerator School \_\_\_\_\_\_ - Erice - April 25th May 4th 2013

### **Conduction | Contact resistance (1/2)**

- Imperfect contact characterized by a temperature drop resulting from
  - Local contact creating constriction of the flux lines
  - Phonon scattering at the solid-solid contact (Kapitza resistance)
  - Heat transfer via interstitial elements
- Overall thermal resistance is defined  $R_c = \frac{T_2 T_1}{Q}$
- R<sub>c</sub> depends on surface condition, nature of the materials, temperature, interstitial materials, compression force...





- Proportional to force, not to pressure (number of contact points increases with force)
- Reduces with increasing force
- Increases by several orders of magnitude from 200 to 20 K



- Can be reduced by strong tightening or Inserting conductive and malleable fillers (charged grease, indium or coatings)
- Modeling is very difficult, the use of experimental data is recommended

  OFFIN Acceptancy Short (ADD = Fines and APP Mark # 2013)

  OFFIN Acceptancy Short (ADD = Fines and APP Mark # 2013)

  OFFIN Acceptancy Short (ADD = Fines and APP Mark # 2013)

  OFFIN Acceptancy Short (ADD = Fines and APP Mark # 2013)

  OFFIN Acceptancy Short (ADD = Fines and APP Mark # 2013)

  OFFIN Acceptancy Short (ADD = Fines and APP Mark # 2013)

  OFFIN Acceptancy Short (ADD = Fines and APP Mark # 2013)

  OFFIN Acceptancy Short (ADD = Fines and APP Mark # 2013)

  OFFIN Acceptancy Short (ADD = Fines and APP Mark # 2013)

  OFFIN Acceptancy Short (ADD = Fines and APP Mark # 2013)

  OFFIN Acceptancy Short (ADD = Fines and APP Mark # 2013)

  OFFIN Acceptancy Short (ADD = Fines and APP Mark # 2013)

  OFFIN Acceptancy Short (ADD = Fines and APP Mark # 2013)

  OFFIN Acceptancy Short (ADD = Fines and APP Mark # 2013)

  OFFIN Acceptancy Short (ADD = Fines and APP Mark # 2013)

  OFFIN Acceptancy Short (ADD = Fines and APP Mark # 2013)

  OFFI (ADD = Fines and APP Mark # 2013)

  OFFI (ADD = Fines and APP Mark # 2013)

  OFFI (ADD = Fines and APP Mark # 2013)

  OFFI (ADD = Fines and APP Mark # 2013)

  OFFI (ADD = Fines and APP Mark # 2013)

  OFFI (ADD = Fines and APP Mark # 2013)

  OFFI (ADD = Fines and APP Mark # 2013)

  OFFI (ADD = Fines and APP Mark # 2013)

  OFFI (ADD = Fines and APP Mark # 2013)

  OFFI (ADD = Fines and APP Mark # 2013)

  OFFI (ADD = Fines and APP Mark # 2013)

  OFFI (ADD = Fines and APP Mark # 2013)

  OFFI (ADD = Fines and APP Mark # 2013)

  OFFI (ADD = Fines and APP Mark # 2013)

  OFFI (ADD = Fines and APP Mark # 2013)

  OFFI (ADD = Fines and APP Mark # 2013)

  OFFI (ADD = Fines and APP Mark # 2013)

  OFFI (ADD = Fines and APP Mark # 2013)

  OFFI (ADD = Fines and APP Mark # 2013)

  OFFI (ADD = Fines and APP Mark # 2013)

  OFFI (ADD = Fines and APP Mark # 2013)

  OFFI (ADD = Fines and APP Mark # 2013)

  OFFI (ADD = Fines and APP Mark # 2013)

  OFFI (ADD = Fines and APP Mark # 2013)

  OFFI (ADD = Fines and APP Mark # 2013)

  OFFI (ADD = Fines and APP Mark # 2013)

13

# Conduction | Contact resistance (2/2) 102 103 PD--Superconducting 40-200 um 10 solder 10 sold

### **Conduction | Transient - Time constant**

• Energy conservation equation

$$\rho C \frac{\partial T}{\partial t} \quad = \quad \nabla. \Big( -k(T) \vec{\nabla} T \Big) \quad + \quad Q \quad \left[ \frac{\mathsf{W}}{\mathsf{m}^3} \right]$$

• In 1D with constant coefficient, one can identify thermal diffusivity:

$$\frac{\partial T}{\partial t} = \frac{k}{\rho C} \frac{\partial^2 T}{\partial x^2} + Q^* \Rightarrow D = \frac{k}{\rho C} \qquad \left[ \frac{m^2}{s} \right]$$

• And a time constant  $\tau \approx \frac{4}{\pi^2} \frac{L^2}{D}$  (T=0.63T<sub>final</sub>) for T=0.95T<sub>final</sub> then t=3 $\tau$ 

| Ther                 | Thermal diffusivity in cm <sup>2</sup> /s |      |       |
|----------------------|-------------------------------------------|------|-------|
|                      | 300 K                                     | 77 K | 4 K   |
| Cu OFHC (RRR=150)    | 1.2                                       | 3.2  | 11700 |
| Pur Al (RRR=800)     | 1                                         | 4.7  | 42000 |
| Commercial AI (6061) | 0.7                                       | 1.3  | 1200  |
| SS 304 L             | 0.04                                      | 0.05 | 0.15  |

# **Conduction in liquid**

- As at room temperature, liquids are bad thermal conductor at low temperature
- Conductivity decreases with temperature
- Conduction in liquid is negligible compared to convection or phase change phenomena
- Except for superfluid helium, where the  $k_{\rm eq}{\sim}1000$  higher than high purity copper

Thermal conductivity of some cryogens at atmospheric pressure (W/m.K)

| O <sub>2</sub> (T=90 K) | N <sub>2</sub> (T=77 K) | H <sub>2</sub> (T=20 K) | He (T=4.2 K) |
|-------------------------|-------------------------|-------------------------|--------------|
| 0.152                   | 0.14                    | 0.072                   | 0.019        |

BB, CERN Accelerator School COO - Erice - April 25th May 4th 2013

# Conduction in gas (1/3)

- Two regimes depending on the ratio of the mean free path of the molecule (1) and the distance between the two surfaces (D) involved in the heat transfer
- $-\ell \gg D$  Free molecular regime



- $-\ell \ll D$  Hydrodynamic regime
- The mean free path for ideal gas  $\lambda = \frac{RT}{\sqrt{2}\pi d^2 N_A p}$
- At constant temperature for a material,
  - The free molecular regime is obtained for the low residual pressure
  - Heat transfer depends on the residual gas pressure and independent of D
  - The hydrodynamic regime is obtained for high residual gas pressure
  - Heat transfer is independent of pressure and described by a Fourier law

BB, CERN Accelerator School 600 - Erice - April 25th May 4th 2013

# Conduction in gas (2/3)

• Free molecular regime : Kennard's law

$$Q = A\alpha \left(\frac{\gamma + 1}{\gamma - 1}\right) \sqrt{\frac{R}{8\pi M}} \frac{\Delta T}{\sqrt{T}} \rho \quad \text{with} \quad \gamma = \frac{C_{\rho}}{C_{\omega}}$$

- $\alpha$  is the accommodation coefficient which relates the degree of thermal equilibrium between the gas and the wall
- Prediction for helium  $\alpha \le 0.5$ , argon  $\alpha \sim 0.78$  and nitrogen  $\alpha \sim 0.78$
- Hydrodynamic regime : **Kinetic theory**  $q = -k\vec{\nabla}T$

$$k = \frac{1}{3} \ell VC$$
 {v : mean velocity of the molecules

|       | Thermal conductivity k [mWm <sup>-1</sup> K <sup>-1</sup> ] @ 1 atm |                |       |
|-------|---------------------------------------------------------------------|----------------|-------|
| T [K] | ⁴He                                                                 | H <sub>2</sub> | $N_2$ |
| 300   | 150.7                                                               | 176.9          | 25.8  |
| 75*   | 62.4                                                                | 51.6           | 7.23  |
| 20    | 25.9                                                                | 15.7           |       |
| 5     | 9.7                                                                 |                |       |

Cryogenic Heat transfer, R.F. Barron, Taylor&Francis, 1999

BB, CERN Accelerator School 600 - Erice - April 25th May 4th 2013

\*T=77.36 for Nitrogen



# Outline | Radiation Heat transfer at low temperature (Lecture 1) Conduction Radiation Introduction Blackbody radiation Surface emission Emissivity Radiation exchange between two surfaces Shielding Multi-layer insulation Convection

# Radiation | Introduction (1/2)

- Heat transfer by electromagnetic waves
- Radiated energy propagates through a medium with wave length  $\lambda$

$$\lambda = \frac{C}{V} \begin{cases} c = \text{speed of light in the medium (m/s)} \\ v = \text{frequency (s}^{-1}) \end{cases}$$

• Wave length associated with thermal radiation: 0.1  $\mu m$  to 100  $\mu m$ 



# Radiation | Introduction (2/2)

- $\bullet$  Heat transfer depends on the wave length,  $\lambda$ 
  - Emitted radiation consists of a continuous non uniform  $~\Phi_{\lambda}$  distribution of monochromatic components
  - Spectral distribution and the magnitude depend on the nature and the temperature of the emitting surface





- Heat transfer depends on the direction
  - Directional distribution of the emitted radiation

• To characterize radiation heat transfer both spectral and directional dependence (as a function of temperature and surface) must to be known

cea

BB, CERN Accelerator School 600 - Erice - April 25th May 4th 2013

### Radiation | Blackbody radiation

- A perfect emitter and an absorber
  - Absorbs all incident radiation regardless of the wave length and direction
  - At a prescribed temperature and wave length, emission is maximum
  - Diffuse emitter (no directional dependence)
- Emissive power (Emittance): Planck distribution

$$E_{\lambda}^{0} = \frac{C_{1}}{\lambda^{5} \left(e^{C_{2}/\lambda T} - 1\right)}$$

$$\begin{cases} C_{1} = 2\pi h C_{0}^{2} = 3.74210^{-16} \text{ Wm}^{4}/\text{m}^{2} \\ C_{2} = h C_{0} / k = 1.438810^{-16} \text{ Wm}^{4}/\text{m}^{2} \end{cases}$$

• Stefan-Boltzmann Law

$$E^{0} = \int_{0}^{\infty} \frac{C_{1}}{\lambda^{5} \left(e^{C_{2}/\lambda T} - 1\right)} d\lambda = \sigma T^{4}$$
with  $\sigma = 5.67 \cdot 10^{-8} \text{ W/m}^{2} \text{K}^{4}$ 

BB, CERN Accelerator School \_\_\_\_\_ - Erice - April 25th May 4th 2013



# Radiation | Surface emission

- From a perfect emitter to a real surface
  - Emissivity is the ratio of the real surface to the blackbody radiation intensity
  - A spectral, monochromatic directional emissivity can be defined as  $\varepsilon(\lambda, \theta, \phi, T)$
- A spectral emissivity as  $\epsilon(\lambda,T)$
- A total emissivity as  $\varepsilon(T)$



Real surface Directional distribution

- Special case (approximation)
  - Grey body :  $\epsilon(\,\theta,\varphi,\,T)$  independent of  $\lambda$
  - Diffuse body :  $\epsilon(\lambda, T)$  independent of direction
- Real emissivity depends on the direction and wavelength

BB, CERN Accelerator School 600 - Erice - April 25th May 4th 2013

### Radiation | Emissivity (1/2)

- · Emissivity decreases with temperature
- · Emissivity increases with oxidation, impurities, dirt
- To achieve the lowest emissivity value
  - Highly polished surface
  - High conductivity surfaces (gold, silver copper or aluminum)
- Many data can be found in the literature

### Total emissivity of various metal

|                                                       | 300 K | 78 K | 4,2 K |
|-------------------------------------------------------|-------|------|-------|
| 3M Black paint (80 $\mu m$ ) on copper surface        | 0,94  | 0,91 | 0,89  |
| Polished Aluminum (33 µm in rough.)                   | 0,05  | 0,23 | 0,018 |
| Polished Copper (41 µm in rough.)                     | 0,10  | 0,07 | 0,05  |
| 304 Polished <b>Stainless steel</b> (27 µm in rough.) | 0,17  | 0,13 | 0,08  |

K H Hawks & W Cottingham: Total Normal Emittances of Some Real Surfaces at Cryogenic Temperatures, Advances In Cryogenic Engineering, Vol 16, 1970, pp 467-474.

BB, CERN Accelerator School 600 - Erice - April 25th May 4th 2013

### Radiation | Emissivity (2/2)



# Radiation | Radiation exchange between two surfaces

• Fraction of the radiation leaving surface i and intercepting surface j

View factor Fii

F<sub>11</sub>=0; F<sub>12</sub>=1 
$$rac{1}{2}$$
  $rac{1}{2}$   $rac{1}$   $rac{1}$   $rac{1}{2}$   $rac{1}$   $rac{1}$   $rac{1}$   $rac{1}$   $rac{1$ 

- -Reciprocity relation A<sub>i</sub>F<sub>ii</sub>=A<sub>i</sub>F<sub>ii</sub>
- Heat exchange between diffuse grey
   two-surface enclosure two-surface enclosure

$$q_{12} = \frac{\sigma(T_1^4 - T_2^4)}{\frac{1 - \varepsilon_1}{\varepsilon_1 A_1} + \frac{1}{A_1 F_{12}} + \frac{1 - \varepsilon_2}{\varepsilon_2 A_2}}$$

Large parallel plates

$$A = A_{1} = A_{2}$$

$$F_{12} = 1$$

$$q_{12} = \frac{\sigma A_{1}(T_{1}^{4} - T_{2}^{4})}{\frac{1}{\varepsilon_{1}} + \frac{1}{\varepsilon_{2}} - 1}$$

$$A_{1}$$

$$A_{2}$$

$$A_{1}$$

$$A_{2}$$

$$A_{2}$$

$$A_{2}$$

$$A_{2}$$

$$A_{2}$$

$$A_{2}$$

$$A_{2}$$

$$A_{2}$$

$$A_{3}$$

$$A_{2}$$

$$A_{4}$$

$$A_{2}$$

$$A_{2}$$

$$A_{3}$$

$$A_{4}$$

$$A_{2}$$

$$A_{5}$$

$$A_{7}$$

$$A_{1}$$

$$A_{2}$$

$$A_{2}$$

$$A_{3}$$

$$A_{4}$$

$$A_{2}$$

$$A_{5}$$

$$A_{7}$$

$$A_{7}$$

$$A_{8}$$

$$A_{9}$$

$$A_{1}$$

$$A_{2}$$

$$A_{2}$$

$$A_{3}$$

$$A_{4}$$

$$A_{5}$$

$$A_{7}$$

$$A_{8}$$

$$A_{1}$$

$$A_{2}$$

$$A_{2}$$

$$A_{3}$$

$$A_{4}$$

$$A_{5}$$

$$A_{7}$$

$$A_{8}$$

$$A_{9}$$

$$A_{1}$$

$$A_{2}$$

$$A_{1}$$

$$A_{2}$$

$$A_{3}$$

$$A_{4}$$

$$A_{5}$$

$$A_{7}$$

$$A_{8}$$

$$A_{9}$$

$$A_{1}$$

$$A_{1}$$

$$A_{2}$$

$$A_{2}$$

$$A_{3}$$

$$A_{4}$$

$$A_{5}$$

$$A_{7}$$

$$A_{8}$$

$$A_{8}$$

$$A_{9}$$

$$A_{1}$$

$$A_{2}$$

$$A_{1}$$

$$A_{2}$$

$$A_{3}$$

$$A_{4}$$

$$A_{5}$$

$$A_{7}$$

$$A_{8}$$

$$A_{8}$$

$$A_{9}$$

$$A_{1}$$

$$A_{2}$$

$$A_{1}$$

$$A_{2}$$

$$A_{3}$$

$$A_{4}$$

$$A_{5}$$

$$A_{7}$$

$$A_{8}$$

$$A_{8}$$

$$A_{9}$$

$$A_{1}$$

$$A_{2}$$

$$A_{1}$$

$$A_{2}$$

$$A_{3}$$

$$A_{4}$$

$$A_{5}$$

$$A_{7}$$

$$A_{8}$$

$$A_{8}$$

$$A_{9}$$

$$A_{1}$$

$$A_{1}$$

$$A_{2}$$

$$A_{1}$$

$$A_{2}$$

$$A_{3}$$

$$A_{4}$$

$$A_{5}$$

$$A_{7}$$

$$A_{8}$$

$$A_{8}$$

$$A_{9}$$

$$A_{1}$$

$$A_{2}$$

$$A_{1}$$

$$A_{2}$$

$$A_{3}$$

$$A_{4}$$

$$A_{5}$$

$$A_{7}$$

$$A_{8}$$

$$A_{8}$$

$$A_{9}$$

$$A_{1}$$

$$A_{2}$$

$$A_{1}$$

$$A_{2}$$

$$A_{3}$$

$$A_{4}$$

$$A_{5}$$

$$A_{7}$$

$$A_{8}$$

$$A_{8}$$

$$A_{8}$$

$$A_{9}$$

$$A_{1}$$

$$A_{1}$$

$$A_{2}$$

$$A_{2}$$

$$A_{3}$$

$$A_{4}$$

$$A_{5}$$

$$A_{7}$$

$$A_{8}$$

$$A_{8}$$

$$A_{8}$$

$$A_{8}$$

$$A_{9}$$

$$A_{1}$$

$$A_{1}$$

$$A_{2}$$

$$A_{1}$$

$$A_{2}$$

$$A_{3}$$

$$A_{4}$$

$$A_{5}$$

$$A_{7}$$

$$A_{8}$$

$$A_{8}$$

$$A_{8}$$

$$A_{8}$$

$$A_{9}$$

$$A_{1}$$

$$A_{1}$$

$$A_{2}$$

$$A_{3}$$

$$A_{4}$$

$$A_{5}$$

$$A_{7}$$

$$A_{8}$$

$$A_{8}$$

$$A_{8}$$

$$A_{9}$$

$$A_{1}$$

$$A_{1}$$

$$A_{2}$$

$$A_{3}$$

$$A_{4}$$

$$A_{5}$$

$$A_{7}$$

$$A_{8}$$

$$A_{8}$$

$$A_{8}$$

$$A_{9}$$

$$A_{1}$$

$$A_{1}$$

$$A_{2}$$

$$A_{3}$$

$$A_{4}$$

$$A_{5}$$

$$A_{7}$$

$$A_{8}$$

$$A_{8}$$

$$A_{8}$$

$$A_{8}$$

$$A_{9}$$

$$A_{1}$$

$$A_{1}$$

$$A_{2}$$

$$A_{3}$$

$$A_{4}$$

$$A_{5}$$

$$A_{7}$$

$$A_{8}$$

$$A_{8}$$

$$A_{8}$$

$$A_{8}$$

$$A_{9}$$

$$A_{1}$$

$$A_{1}$$

$$A_{2}$$

$$A_{3}$$

$$A_{4}$$

$$A_{5}$$

$$A_{7}$$

$$A_{8}$$

$$A_{8}$$

$$A_{8}$$

$$A_{8}$$

$$A_{9}$$

$$A_{1}$$

$$A_{1}$$

$$A_{2}$$

$$A_{3}$$

$$A_{4}$$

$$A_{5}$$

$$A_{7}$$

$$A_{8}$$

$$A_{8}$$

$$A_{8}$$

$$A_{8}$$

$$A_{9}$$

$$A_{1}$$

$$A_{1}$$

$$A_{2}$$

$$A_{3}$$

$$A_{4}$$

$$A_{5}$$

$$A_{8}$$

$$\frac{1}{r_{2}} = \frac{r_{1}}{r_{2}} \qquad q_{12} = \frac{\sigma A_{1} (T_{1}^{4} - T_{2}^{4})}{\frac{1}{\varepsilon_{1}} + \frac{1 - \varepsilon_{2}}{\varepsilon_{2}} \left(\frac{r_{1}}{r_{2}}\right)}$$



# Radiation | Shielding at low temperature

- Blackbody heat transfer from room temperature
  - From 300 K to 77 K :  $q=457 \text{ W/m}^2$ - From 300 K to 4.2 K : q=459  $\mbox{W/m}^{2}$

$$q = \sigma(T_{warm}^{4} - T_{cold}^{4})$$

- Blackbody heat transfer from Nitrogen temperature
  - From 77 K to 4.2 K : q=2 W/m<sup>2</sup> (q~200 times lower than 300 K)
- To reduce heat load at low temperature: intermediate surface at intermediate temperature

$$q = \frac{\varepsilon \sigma}{2 - \varepsilon} (T_{warm}^{\quad 4} - T_{cold}^{\quad 4}) \qquad q = \frac{1}{2} \frac{\sigma \varepsilon}{2 - \varepsilon} (T_{warm}^{\quad 4} - T_{cold}^{\quad 4}) \qquad q = \frac{1}{n + 1} \frac{\sigma \varepsilon}{2 - \varepsilon} (T_{warm}^{\quad 4} - T_{cold}^{\quad 4})$$







### Radiation | Multi-layer insulation (1/2)

### • MLI or Superinsulation

- Reflecting layers to reduce heat transfer by radiation
- Insulating interlayer to reduce heat transfer between reflecting layers
- High vacuum to reduce convection and residual gas conduction

### · MLI materials

- Reflecting layers: mostly aluminum metallized Mylar films (both sides)
  - · Thermal conductivity anisotropy
- Insulating interlayer: mostly net of polyester or fiber glass, paper silk



- Heat transfer parallel to the layers is several order of magnitude higher than normal to layers due to the pure aluminum
- Bad vacuum than residual conduction becomes important
- Low temperature boundary (77 K to 4 K)
  - Radiation negligible, heat transfer dominated by conduction
- High temperature boundary (300 K to 80 K)
  - Heat transfer dominated by radiation : MLI efficient

cea

B, CERN Accelerator School 6 – Erice – April 25th May 4th 2013

29

### Radiation | Multi-layer insulation (2/2)

- Typical value of heat transfer for 20 layers
- 1 to 3 W/m<sup>2</sup> from 300 K to 80 K (5 W/m<sup>2</sup> if compressed)

– Lower than 100 mW/m $^{2}$  between 80 K and 4 K



- Number of layers/cm max : 20-30
- Isothermal contact points





- No gaps to have uniform heat transfer
- No mechanical stress  $\rightarrow$  contact point increases the conduction
- Perforated MLI to have low residual pressure



Conduction flux

cea

BB, CERN Accelerator School 6 - Erice - April 25th May 4th 2013

### **Outline | Convection**

• Heat transfer at low temperature

(Lecture 1)

- Conduction
- Radiation
- Convection
  - Introduction to single phase convection
  - · Natural convection
  - · Forced convection
  - · Introduction to boiling
  - · Boiling heat transfer
  - Two-phase convection

BB, CERN Accelerator School 600 - Erice - April 25th May 4th 2013

# Convection | Introduction to single phase flow (1/4)

- Heat is transferred in the fluid by the movement of matter
  - Quantity of energy is advected within the fluid



- The movement of matter can be created externally by a pump or a pressurization system: forced convection
- Equations for convection in the Boussinesq approximation (Steady-State)

- Reynolds number Re =  $\frac{\rho LU}{}$  =  $\frac{\text{inertia forces}}{}$ Nature of the flow  $\mu$  viscous forces
- $P_T = \frac{\mu C}{m} = \frac{momentum \ diffusivity}{momentum \ diffusivity} \qquad {\it Thermophysical properties of the fluid}$ - Prandtl number thermal diffusivity

BB, CERN Accelerator School 60 - Erice - April 25th May 4th 2013

# Convection | Introduction to single phase flow (2/4)

- · Laminar and turbulent regimes
  - Essential to know in which regime the flow is since the surface heat transfer and friction depend strongly on it
- Laminar regime for Re<2300
  - Viscous forces dominate, flow motion ordered (streamline)
  - Surface heat transfer low
  - Surface friction low
- Turbulent regime for Re>5 105
  - Inertia forces dominate, flow motion highly irregular (velocity fluctuation)
  - Surface heat transfer high

- Surface friction high



BB, CERN Accelerator School 60 - Erice - April 25th May 4th 20

33

# Convection | Introduction to single phase flow (3/4)

- The fluid movement can be created internally by a decrease or increase of the fluid density or the buoyancy effect: **natural convection**
- Equations for convection in the Boussinesq approximation (Steady-State)

Continuity 
$$\nabla.\mathbf{v} = 0$$
  $\nabla.\mathbf{v}^* = 0$   $\nabla.\mathbf{v}^* = 0$  Navier-Stokes  $\rho \mathbf{v}.\nabla \mathbf{v} = -\nabla p + \mu \nabla^2 \mathbf{v} + \beta \Delta T \mathbf{g} \xrightarrow{\text{Dimensionless}} \mathbf{v}^*.\nabla \mathbf{v}^* = -\nabla p^* + \text{Re}^{-1} \nabla^2 \mathbf{v}^* + \text{Gr Re}^{-2} T^*$   $\mathbf{v}^*.\nabla T^* = \text{Re}^{-1} \text{Pr}^{-1} \nabla^2 T^*$ 

-Grashof number 
$$Gr = \frac{g\beta\Delta TL^2}{\mu^2} = \frac{\text{buoyancy forces}}{\text{viscous forces}}$$

- –When  $GrRe^{-2}\gg 1$ , then forced convection negligible
- -If GrRe<sup>-2</sup>≈1, then mixed convection
- -Gr has the same role for natural convection as Re for forced convection
- -Turbulence has a strong effect as in forced convection and reached for

BB, CERN Accelerator School 600 – Erice – April 25th May 4th 2013

### Convection | Introduction to single phase flow (4/4)

- Heat is transferred to solid elements
  - Quantity of energy transfer in or out of the fluid to the solid
  - Newton's law q=h(T<sub>s</sub>-T<sub>∞</sub>)
- At the boundary, the local heat flux is  $q_n$ =-k. $\nabla T_n$



- Dimensionless, it is the Nusselt number  $Nu = \frac{hL}{k} = \frac{\partial T^*}{\partial n^*}$
- The Nusselt number is to the thermal boundary as the friction coefficient is to the velocity boundary
- Nu=f(Re, Pr, L) for forced convection and Nu=f(Gr, Pr, L) for natural convection
- Nu different for turbulent or laminar (different correlation)



cea

B, CERN Accelerator School CO - Erice - April 25th May 4th 201

# **Convection | Natural convection heat transfer**

- Heat flux is computed with correlation Nu=(Gr, Pr, L)
- Thermophysical properties are established at average temperatureT=(T<sub>w</sub>+T<sub>x</sub>)/2
  - $T_w =$ solid temperature;  $T_\infty$  temperature of the fluid
- The simplest correlations are Nu=c(Gr.Pr)<sup>n</sup>
  - For laminar regime n=1/4
  - Turbulent regime =1/3
- Few data exit for cryogenic fluid since two-phase phenomena take over
- Results not very different from classic fluids

|                          | С     | n     |
|--------------------------|-------|-------|
| Supercritical helium     |       |       |
| Vertical orientation     | 0.615 | 0,258 |
| Turbulent                |       |       |
| Liquid Nitrogen          |       |       |
| different orientations   | 0,14  | 1/3   |
| Turbulent                |       |       |
| Liquid Hydrogen          |       |       |
| Different configurations | 0,096 | 0,352 |
| turbulent                |       |       |

Hilal MA, Boom RW. An experimental investigation of free convection heat transfer in supercritical helium. Int. J Mass Trans. 1980; 23 697-705.

Clark, J.A. Cryogenic heat transfer Adv. in Heat Transfer 5 (1968) p. 375

Daney DE. Turbulent natural convection of liquid deuterium, hydrogen and nitrogen within enclosed vessels. Int. J Heat Mass Trans. 1976; **19(4)** p. 431-41.

cea

BB, CERN Accelerator School 60 - Erice - April 25th May 4th 2013

### Convection | Forced convection heat transfer

- Heat flux is computed with correlation Nu=(Re, Pr, L)
  - Thermophysical properties are established at average temperature T=(Ts+Tm)/2
- Correlation used for non cryogenic fluid works at low temperature
- Turbulent flow in pipes: The Dittus-Boetler correlation Nu=0.023Re<sup>0.8</sup>Pr<sup>0.4</sup>

- Hydrogen: Nu=0.023Re<sup>0.8</sup>Pr<sup>0.4</sup>

Tatsumoto H, et al. Forced Convection Heat Transfer of Liquid Hydrogen Through a 200-mm Long Heated Tube. Physics Procedia. 2012;36(0):1360-5.

- Supercritical helium: Nu=0.022Re<sup>0.8</sup>Pr<sup>0.4</sup>

Giarratano PJ, et al. Forced convection heat transfer to subcritical helium I. Adv. Cryo. Eng. 19, Plenum Press; 1974. p. 404-16.

- Nitrogen : Nu=0.027Re $^{0.8}$ Pr $^{0.14/3}$  ( $\mu_{\rm f}/\mu_{\rm w}$ ) $^{0.14}$ 

Ohira K, et al. Pressure-drop reduction and heattransfer deterioration of slush nitrogen in horizontal pipe flow. Cryogenics. 2011;51(10):563-74

• Laminar flow in pipes : very rare, excepted in porous media

cea

BB, CERN Accelerator School 600 - Erice - April 25th May 4th 2013

37

# **Convection | Introduction to boiling**

- Heat is transferred between a surface and the fluid by the conjunction of phase change and the vapor bubble movement in the vicinity of the surface
  - At the heated surface the fluid must be superheated Tf>Tsat(p)
  - Imperfections in the surface where bubbles can form



 For bubbles to be stabilized, the pressure inside must exceed the saturation pressure to overcome the surface tension, σ

$$p_{v} - p_{sat} = \frac{2}{r}\sigma$$

- Heat transfer combines natural convection in the liquid, latent heat due to the bubble formation and the bubble hydrodynamics
  - Depends on the bubble growth rate, detachment frequency, number of nucleation sites, surface conditions...



ēā

BB, CERN Accelerator School 600 - Erice - April 25th May 4th 2013



# Convection | Pool boiling heat transfer (1/2)

• Heat transfer in nucleate boiling : Kutateladze correlation q=f(p).ΔT<sup>2.5</sup>

$$\frac{h}{k_{i}} \left( \frac{\sigma}{g \rho_{i}} \right)^{1/2} = 3.25 \cdot 10^{-4} \left[ \frac{q C_{\rho_{i}} \rho_{i}}{h_{\nu} \rho_{\nu} k_{i}} \left( \frac{\sigma}{g \rho_{i}} \right)^{1/2} \right]^{0.6} \left[ g \left( \frac{\rho_{i}}{\mu_{i}} \right)^{2} \left( \frac{\sigma}{g \rho_{i}} \right)^{3/2} \right]^{0.125} \left( \frac{p}{\left( \sigma g \rho_{i} \right)^{1/2}} \right)^{3/2}$$

- Depends on the orientation, fluid, pressure, surface state, ...
- Works for most cryogenic fluids within one order of magnitude



### Convection | Pool boiling heat transfer (2/2)

• Critical heat flux: Correlation of Kutateladze

$$q_c = 0.16 \ h_{_{IV}} \ \rho_{_{V}}^{^{1/2}} \left[ \sigma g \left( \rho_{_{I}} - \rho_{_{V}} \right) \right]^{1/4}$$

- Works for helium, nitrogen, oxygen and hydrogen

Shirai Y, et al. Boiling heat transfer from a horizontal flat plate in a pool of liquid hydrogen. Cryogenics. 2010;50(6–7):410-6. Lyon DN. Boiling heat transfer and peak nucleate boiling fluxes in saturated liquid helium between the I and critical temperatures. 10, 1964. p. 371-9.

 Not valid when the fluid is sub-cooled i.e. pressure above the heated surface is higher than saturated pressure

$$\frac{q_{c,sub}}{q_{c,sat}} = 0.2 \left[ 1 + 0.15 \left( \frac{\rho_{_{I}}}{\rho_{_{V}}} \right)^{3/4} \frac{C_{_{\rho}} \Delta T_{sub}}{h_{_{IV}}} \sigma \right]$$

Kirichenko YA, et al. Heat transfer in subcooled liquid cryogens. Cryogenics. 1983;23(4):209-11.

• Film boiling : An order of magnitude lower heat transfer coefficient

cea

BB, CERN Accelerator School 600 - Erice - April 25th May 4th 2013

.

# Convection | Two-phase flow heat transfer

- Two-phase forced flow heat transfer
  - Modeling must take into account the boiling heat transfer depending on the surface heat transfer, and the forced convection depending on the vapor quality  $(x=\dot{m}_i/\dot{m}_i)$  and the mass flow rate  $(\dot{m}_i)$
  - Boiling tends to be dominant for low quality and high heat flux
  - Forced convection tends to be dominant for large vapor quality and mass flow rate
  - Several general correlations and specific to cryogenic fluid exit
  - Better to try more than one to evaluate the heat transfer rate
  - Superposition method (Chen)

$$h_{TP} = h_{nb} + h_{r}$$

- Intensification model (Shah)

$$h = F h$$

Asymptotic model (Liu et Winterton n=2)

$$h_{TP} = \left[ \left( F_{nb} h_{nb} \right)^n + \left( F_I h_I \right)^n \right]^{1/I}$$



CHEN J.C. Correlation of boiling heat transfer to saturated fluids in convective boiling. Ind. Eng. Chem. Proc. Des. Dev., 5, 3 (1966), 322-339.
SHAH M.M. – A new correlation for heat transfer during boiling flow through pipes. ASHRAE Trans, 82, 2 (1976), 66-86.
Steiner H, Taborek J. Flow boiling heat transfer in vertical tubes correlated with an asymptotic model. Heat narisef Engineering. 1992;13(2):43-69.





### Lecture 1 | References & Acknowledgement

### Journal

- Cryogenics, Elsevier Science (http://www.journals.elsevier.com/cryogenics/)

### • Monographs

- W. Frost, Heat transfer at low temperature, Plenum Press NY 1975
- J.W. Ekin, Experimental techniques for low temperature measurements. Oxford University Press; 2006
- R.F. Barron, Cryogenic heat transfer, Taylor&Francis, Philidelphia,1999
- T.M. Flynn, Cryogenic Engineering, Marcel Dekker, NY, 1997
- S.W. Van Sciver, Helium Cryogenics 2<sup>nd</sup>, Springer, NY, 2012
- Handbook of cryogenic engineering, ed. J.G. Weisend, Taylor&Francis, 1998

### • Conference Proceedings

- Advances in Cryogenic Engineering, Volumes 1 57, proceedings of the Cryogenic Engineering and International Cryogenic Materials Conference (USA)
- Proceedings of the International Cryogenic Engineering Conference (Europe/Asia)

### Data bases

- NIST Data base : http://cryogenics.nist.gov
- Cryocomp. Eckels Engineering. 3.06. Cryodata Inc. Florence SC, USA 29501
- Hepak, Gaspak, MetalPak, Cryodata inc.

### Acknowledgement

- Philippe Brédy (CEA Saclay), Heat transfer lectures from CEA Saclay and IPN Orsay people

BB, CERN Accelerator School 60 – Erice – April 25th May 4th 2013