

Superconductors for magnets II

René Flükiger

CERN TE-MSC

- **1.** Nb₃Sn wires in magnets: mechanical stress effects
- 2. MgB₂ wires for high current leads in LHC Upgrade
- 3. Other s.c. round wires for high field accelerators
 - A. Bi-2212 wires (HTS)
 - **B.** Pnictides
- 4. BaCuO tapes (Coated conductor HTS)
 - **Annex: Wires for NMR magnets**

Stress effects on J_c of superconducting wires

1. Nb₃Sn wires in magnets: mechanical stress effects

Question:

How is J_c of a Nb₃Sn wire influenced by the strong Lorentz forces at high fields in large magnets?

The 3 D situation is analyzed by studying the effect of stress applied parallel and perpendicular to the wire:

Effect of uniaxial stress

Effect of compressive stresses

Reaction at 650 °C \longrightarrow Operation at 4.2K: $\Delta T = 1000K$!

Differential thermal contraction α :

After cooling by 1'000 K, the filaments are under compression (called «precompression»)

As a consequence, the A15 phase in the Nb₃Sn filaments undergoes an elastical tetragonal distortion. High temperature neutron diffraction shows that the distortion occurs below 500°C Bronze : $\alpha = 18 \times 10^{-6} \text{ K}^{-1}$ Nb₃Sn : $\alpha = 8 \times 10^{-6} \text{ K}^{-1}$

Effect of uniaxial tensile strain

Electronic or phononic effects?

The effect is mainly correlated to changes in the phonon spectrum (Markowski et al.), the change of the electronic density of states having a minor effect (Hampshire et al.).

Hydrostatical or non-hydrostatical effects?

Hydrostatical pressure components: small effect of T_c and J_c . The observed effect on T_c , B_{c2} and J_c in Nb₃Sn wires submitted to mechanical stresses is correlated to the non-hydrostatic stress components.

Various measuring devices:Uniaxial (Linear) strain rig (J. Ekin)Pacman (Univ. Twente)Walters spiral (Univ. Geneva)

Uniaxial strain rig (KTI Karlsruhe)

axial load F soldered U_{4cm} • U_{2cm} B Ι

Wire length: 200 mm Magnetic field: 13.5 T (split coil) Maximum force: 1 kN Maximum current: 1'000 A Temperature: 4.2K Strain values: extensometers I_c criterion: 1 μ V/cm

The CERN Accelerator School

Force can be applied for axial tensile and axial compressive loads

Modified Walters Spiral (WASP), Univ. Geneva

Rotation of the spiral is transformed into uniaxial force

Uniaxial tensile and compressive forces possible

Max. current 1'000 A Wire length up to 0.8 m I_c criterion 0.01 μ V/cm Magnetic field up to 21T

iterion (0.01 mV/cm) leads to early Detection of I

The irreversible strain limit (begin of nanocracks) depends on the I_c criterion: Advantage for the Walters spiral

S

The CERN Accelerator School

Tape length: 0.8 m

Uniaxial stress effects are also effective in HTS superconductors!

D. Uglietti, B. Seeber, R. Flükiger, SuST, in press

Case study I solution

Margina (Summara farmula)

- Nb₃Sn parameterization
 - Temperature, field, and strain dependence of Jc is given by Summers' formula

$$J_{C}(B,T,\varepsilon) = \frac{C_{Nb_{3}Sn}(\varepsilon)}{\sqrt{B}} \left[1 - \frac{B}{B_{C2}(T,\varepsilon)} \right]^{2} \left[1 - \left(\frac{T}{T_{C0}(\varepsilon)}\right)^{2} \right]^{2}$$
$$\frac{B_{C2}(T,\varepsilon)}{B_{C20}} = \left[1 - \left(\frac{T}{T_{C0}(\varepsilon)}\right)^{2} \right] \left\{ 1 - 0.3 \operatorname{l} \left(\frac{T}{T_{C0}(\varepsilon)}\right)^{2} \left[1 - 1.77 \ln \left(\frac{T}{T_{C0}(\varepsilon)}\right) \right] \right\}$$
$$C_{Nb_{3}Sn}(\varepsilon) = C_{Nb_{3}Sn,0} \left(1 - \alpha_{Nb_{3}Sn} \left| \varepsilon \right|^{1.7} \right)^{1/2}$$
$$B_{C20}(\varepsilon) = B_{C20m} \left(1 - \alpha_{Nb_{3}Sn} \left| \varepsilon \right|^{1.7} \right)$$
$$T_{C0}(\varepsilon) = T_{C0m} \left(1 - \alpha_{Nb_{3}Sn} \left| \varepsilon \right|^{1.7} \right)^{1/3}$$

where α_{Nb3Sn} is 900 for $\varepsilon = -0.003$, T_{Cmo} is 18 K, B_{Cmo} is 24 T, and $C_{Nb3Sn,0}$ is a fitting parameter equal to 60800 AT^{1/2}mm⁻² for a *Jc*=3000 A/mm² at 4.2 K and 12 T.

Case sludy I solution

Moraine (Detture)e fermule)

NbTi parameterization

- Temperature and field dependence of $B_{\rm C2}$ and $T_{\rm C}$ are provided by Lubell's formulae:

$$B_{C2}(T) = B_{C20} \left[1 - \left(\frac{T}{T_{C0}} \right)^{1.7} \right] \qquad T_C(B)^{1/1.7} = T_{C0} \left[1 - \left(\frac{B}{B_{C20}} \right)^{1/1.7} \right]$$

where B_{C20} is the upper critical flux density at zero temperature (~14.5 T), and T_{C0} is critical temperature at zero field (~9.2 K)

• Temperature and field dependence of *Jc* is given by Bottura's formula

$$\frac{J_{C}(B,T)}{J_{C,ref}} = \frac{C_{NbTi}}{B} \left[\frac{B}{B_{C2}(T)} \right]^{\beta_{NbTi}} \left[1 - \frac{B}{B_{C2}(T)} \right]^{\beta_{NbTi}} \left[1 - \left(\frac{T}{T_{C0}} \right)^{1.7} \right]^{\gamma_{NbTi}}$$

where J_{C,Ref} is critical current density at 4.2 K and 5 T (~3000 A/mm2) and C_{NbTi} (27 T), α_{NbTi} (0.63), β_{NbTi} (1.0), and γ_{NbTi} (2.3) are fitting parameters.

Transverse compressive stresses, i.e. in cables

Knowledge about the effect of transverse compressive stresses: Important for the safe design of

* High field magnets (B > 20 T)
* Large magnets, for Fusion magnets (Tokamak) Accelerators (LHC, LHC Upgrade)

Measuring devices:

- * Pacman, Univ. Twente
- * Inverse Walters Spiral (Univ. Geneva)

Ø 40 mm, 1.5 mm thick steel Conduit rated current: 70 kA/11.8 T/4,6 K ~1028 strands:Nb₃Sn + 1/3 Cu

Inverse Walters spiral (Univ. Geneva)

Specifications: - F = 5KN - I = 1000 A

- Field: 21 T

CAS, Erice, Italy, 25 April - 4 May, 2013

J_c vs. transverse compressive stress σ_t

J. Ekin (1986)

W. Specking, R.Flükiger, (1987)

Conclusions : Nb₃Sn wires

- Low and intermediate fields: J_c determined by flux pinning (grain size)
- At high fields, J_c is determined by the value of B_{c2}
- Industrial round wires for magnets up to 23.5 T (1 GHz): Nb₃Sn
- The amount of Nb₃Sn wire in a magnet increases strongly with the produced field: at 20T, 5 times more Nb₃Sn than for 12 T.
- Bronze route wires: best suited for *«persistent mode»* operation of NMR magnets, in spite of their lower J_c value with respect to Internal Sn wires
- Internal Sn (RRP) and Powder-in-Tube (PIT) wires satisfy the conditions for *LHC Upgrade accelerator* magnet: 1'500 A/mm² at 4.2K/15T.

2. MgB₂ wires

The MgB₂ system

MgB₂ Superconductor

— Conventional superconductors: $T_c = 23 \text{ K}$

BCS mechanism: electron-phonon interaction leads to Cooper pairs

— High T_c oxide superconductors: T_c ~ 160 K

Superconductivity mechanism under investigation

 MgB₂: conventional, BCS superconductor T_c ~ 40 K

Cava, Nature 410, 23 (2001)

Hexagonal lattice a = 0.30834 nm c = 0.35213 nm

The binary Mg-B Phase Diagram

Binary Alloys Phase Diagrams, 2nd Edition, Ed. T. Massalski (A.S.M.International, 1990)

CAS, Erice, Italy, 25 April - 4 May, 2013

Possible applications:

- * Level measurement of Liquid H₂ containers
- * Hydrogen cooled current leads at T ≈ 20K (Kostyuk et al.)
- * LINK project (CERN): 13'000A current leads at ≈10K
 - (> 10'000 km of MgB₂ wire): under investigation
 - (talk at CAS, last day: Amalia Ballarino)
- * Ignitor (under construction (Russia/Italy)
- * Wind generators ? First device under study
- * Poloidal field coils ? The question is discussed

Determination of $B_{c2}^{\prime\prime}$ and B_{c2}^{\perp} in *ex situ* MgB₂ wires

The CERN Accelerator School

Upper critical field and irreversibility field of MgB₂

Upper critical field of MgB₂: films and wires

The CERN Accelerator School

The reason for this difference is still unknown

24

Comparison of B_{c2} for various superconductors

MgB₂ wires, ex situ processing

Preparation of MgB₂ tapes

MgB₂ wires: 3 preparation methods

The CERN Accelerator School

ex situ: MgB, powders in situ: Mg + B powders Mechanical Monocore wire IMD: Mg rods + B powders deformation Mg rod Metal tube Bundling (several wires in metal sheath) Deformation Heat treatment Multifilamentary wire Cu-10wt.% Ni tube

Known MgB₂ wire configurations

The CERN Accelerator School

In situ

CAS, Erice, Italy, 25 April - 4 May, 2013

The limitation of J_c in MgB₂ due to anisotropy

CAS, Erice, Italy, 25 April - 4 May, 2013

J_c of densified MgB₂ wires after densification

Densified 1 GPa

Densification machine for long s.c. wires

Possible application of densification: Bi-2212, pnictides,....

CAS, Erice, Italy, 25 April - 4 May, 2013

MgB₂ wire: highest Jc at high fields

Comparison between various superconductors

The system MgB₂

Advantages: Abundant constituents Mg and B No chemical toxicity $\frac{Low \ cost \ material}{(comparable \ or \ lower \ to \ NbTi)}$ Applicable at $4.3 \le T \le 25$ K Mechanically stable

Disadvantages At 4.2K, only applicable up to ~11 T At 25K, only applicable up to ~ 5 T Thermal stability: should be increased

3. Other round wires for high field accelerators

3A. The HTS system Bi-2212

The system Bi-2212

Possible applications

High field magnets22.5T (20T+2.5T insert)Accelerator magnets??

Advantage: Round wire, but * I_c still low * mechanically weak

Main research efforts:

D. Larbalestier et al., Florida State University Oxford Instruments

Round Bi-2212 wires

Is Bi-2212 an alternative for high field dipoles?

Bi(2212): an alternative to Nb₃Sn for high field dipoles?

Peter Lee's plot about J_c values

Large bubbles form on melting and holding at T_{max}

Bi-2212 Reaction scheme

J_c of Bi-2212: progress

The CERN Accelerator Schoo

- Combined "best process" result in 15 T J_E values >450 A/mm²
- \rightarrow Values match the best we've ever obtained, seem reproducible \bigcirc

Further enhancements are possible!

The system Bi-2212

Disadvantages: Important costs due to processing and Ag sheath Poor mechanical stability: no solution yet for enhancing the mechanical reinforcement

FeAs based superconductors

Examples: 122 Wires based on (Ba,K)Fe₂As₂ and (Sr,K)Fe₂As₂

Very recent data obtained from

- * J. Weiss, M. Hannion, E. Hellstrom, J. Jiang, F. Kametani, D. Larbalestier, A. Polyanskii, and C. Tarantini, FSU, 2012
- * Z. Gao, L. Wang, C. Yao, Y. Qi, C. Wang, X. Zhang, C. Wang, YW. Ma, ArXiv:1110.5784
- * YW. Ma, ICSM2012
- * I. Pallecchi, M. Tropeano, G. Lamura, M. Pani, M. Palombo, A. Palenzona, M. Putti, to be published in Physica C

TEM of 122 pnictides

TEM shows K-doped 122 has small grains, contains only little amounts of nonsuperconducting material, and has many clean GBs

F. Kametani et al., FSU, ASC 2012

J. Weiss, M. Hannion, E. Hellstrom, J. Jiang, F. Kametani, D. Larbalestier, A. Polyanskii, and C. Tarantini, Arkhiv, 2012

What can we learn comparing HTS and pnictides (from the current carrying point of view)?

- Very low coherence lengths > very high H_{c2} values lengths in both, HTS and pnictides.
- Considerably lower anisotropy in pnictides reduces the effect of the field orientation in the wrong direction (perp. to the wire surface) (K. Tanabe, H. Hosono, Jap. J. Appl. Phys. 51 (2012) 010005).

it is possible to produce round pnictide wires with considerable J_c values: 2 x 10⁴ A/cm² at 4.2K/ 10T (Y.W. Ma, 2011).

This behavior, only 4 years after the discovery of pnictides, is encouraging for further research

AdvantagesAbundant basis materialsLow costs of constituents and wiresPossibility to fabricate round wiresApplicable up to very high magnetic fields (30 T and more)

Disadvantages Toxicity of As and Se Strong metallurgical problems to get homogeneity Thermal stability: no data yet

HTS Coated Conductors

4. The systems Y-123 or R.E.-123 («Coated Conductors»)

YBa₂Cu₃O_{7 - d} Superconductor of the Future?

Levitating YBaCuO sample at 77K

HTS Coated Conductors

The layered oxide structure causes a strong anisotropy in B_{c2}, J_c,..... this induces a layered conductor configuration: Tapes (also called «Coated Conductors»)

Typical shaping of a HTS Coated Conductor with the structure YBa₂Cu₃O₇. Two main deposition techniques

Typical «Coated Conductor» tape architectures

Other

REBaCuO tape of AMSC

Reel-to reel PLD process, 40 mm wide ~~ Substrats: RABITS (Rolling Assisted Biaxial Texturing

SEI: Fabrication width 30 mm,

No indication about production rate

- AMSC: Fabrication width 40 mm, Goal: 100 mm width, lengths: > 500 m > 1'000 km/year of 4 mm tape
- SuperPower: Fabrication width 12 mm, Lengths: 1'400 m July 2010: > 150 km/year (?)
- Fujikura: Fabrication width 10 mm, lengths: > 1'000 m 2009: PLD/CeO₂ (60 m/h), IBAD MgO (\leq 1,000 m/h), Y₂O₃ (500m/h), Al₂O₃ (150 m/h), GdBaCuO (15 m/h)
- SuNAM: Fabrication width 12 mm, lengths: > 100 m (planned: 2'000 m) Nov. 2009: Homoepitactic (70m/h),LMO buffer (50 m/h) Goal: 2,000 km/year (assuming 100% yield)
- Bruker: Fabrication width 40 mm, lengths: ≤ 100 m (planned: > 1'000 m) Goal: line speed (ABAD) 30 m/h and PLD (70 m/h)

Current density	* Carry optimized current in REBaCuO (dopants)
Mechanical	 * Substrate strong enough at high temperature to stand the formation of REBaCuO * Tape as a whole strong and flexible enough to be wound into cable and coils at 300 K * Tape must withstand longitudinal and transverse stresses during operation
Electrical stability	* Carry excess current in Ag layer and in in AI, Cu, outer layers
Thermal stability	* Enable heat transfer to the coolant
AC losses	 Modify architecture to minimize AC losses (Roebel, striations)

Towards higher J_{cw} values

CAS, Erice, Italy, 25 April - 4 May, 2013

I_c-B-T property for 600A class C.C.

Measured by Prof. Kiss group of Kyushu University, In collaboration with Florida State Univ. & Tohoku Univ.

Higher critical current density

Enhanced layer thickness:

Fujikura reports 6 mm thick layer with 1'040 A/cm-w (Deposition time not reported)

M. Igarishi et al., EUCAS 2009 (Fujikura)

Reduction of AC losses

- * Roebel technique,
- * Striations,
- * Roebel + striations

 $I_c(s)/I_c(0)$

Coated Conductors: Effect of tensile stress on J_c

10 T 0.1 µV/cm 50 1.0 1 0 • 0 • <u>0</u> Q2 45 0.9-0.8 $\begin{array}{c|c}
n \text{ value} \\
\hline 0 \\$ Q 40 35 *n* value 0.7 0 0.6 ° 0 • •7 .6 0.5 25 _{0.4} **4.2** K 0 20 0.3 15 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 strain (%)

AMSC tape; measured with a Walters spiral

D. Uglietti, B. Seeber, V. Abächerli, W.L. Carter, R. Flükiger, SuST, 19(2006)869

- Higher homogeneity of J_c over whole tape length
- Thicker layers
- Reproducible production of > 1 km lengths
- Enhanced pinning by nano-additives
- Reduced anisotropy by nano-additives
- <u>Reduced costs</u>

Annex II: Relaxation rates

Annex I: Relaxation rates of various superconductors

Relaxation rates at 5 and 10 K

Persistent mode operation for NMR and IRM technology for a series of superconductors

C. Senatore, P. Lezza, R. Flükiger, to be published

Relaxation rates at 20K

At 20K, the relaxation rates are sufficiently low for persistent mode operation of

* Coated Conductors (for B >> 8T) * MgB₂ (B \leq 5T)