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  1. Nb3Sn wires in magnets: mechanical stress effects 

  2. MgB2 wires for high current leads in LHC Upgrade   

  3. Other s.c. round wires for high field accelerators 

 A. Bi-2212 wires (HTS) 

 B. Pnictides  

  4. BaCuO tapes (Coated conductor HTS) 

      Annex: Wires for NMR magnets  

   

Outline 
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    Stress effects on Jc of superconducting wires 

The 3 D situation is analyzed by studying the effect of stress applied 

parallel and perpendicular to the wire:   

 Effect of uniaxial stress 

 Effect of compressive stresses 

Question:  

How is Jc of a Nb3Sn wire influenced by the strong Lorentz 

forces at high fields in large magnets?  

1. Nb3Sn wires in magnets: mechanical stress effects 
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Origin of mechanical precompression in Nb3Sn wires 

Reaction at 650 °C           Operation at 4.2K: DT = 1000K ! 

 
Differential thermal contraction a : 

  

After cooling by 1’000 K, the 

filaments are under compression 

(called «precompression») 

 

As a consequence, the A15 phase in  

the Nb3Sn filaments undergoes an  

elastical tetragonal distortion. 

High temperature neutron diffraction  

shows that the distortion occurs  

below 500°C   T(K) 
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Effect of uniaxial tensile strain 

Electronic or phononic effects? 

The effect is mainly correlated to changes in the phonon spectrum 

(Markowski et al.), the change of the electronic density of states having a 

minor effect (Hampshire et al.). 

 

Hydrostatical or non-hydrostatical effects? 

Hydrostatical pressure components: small effect of Tc and Jc. The 

observed effect on Tc, Bc2 and Jc in Nb3Sn wires submitted to mechanical 

stresses is correlated to the non-hydrostatic stress components. 

 

Various measuring devices: Uniaxial (Linear) strain rig (J. Ekin) 

    Pacman (Univ. Twente) 

    Walters spiral (Univ. Geneva) 
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Uniaxial strain rig (KTI Karlsruhe) 

 

Wire length: 200 mm 

Magnetic field: 13.5 T (split coil) 

Maximum force: 1 kN 

Maximum current: 1’000 A 

Temperature: 4.2K 

Strain values: extensometers 

Ic criterion: 1 mV/cm 

soldered 
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    The Pacman strain device (University of Twente) 

 

Force can be applied for axial tensile and 

axial compressive loads  
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Modified Walters Spiral (WASP), Univ. Geneva 

 

Modified Walters Spiral (WASP) for round wires and tapes

Wire

Tape

Spiral on 

Ti-Al-V 

Rotation of the 

spiral is 

transformed into 

uniaxial force 

Uniaxial tensile 

and compressive 

forces possible 

Max. current 1’000 A 

Wire length up to 0.8 m 

Ic criterion 0.01mV/cm 

Magnetic field up to 21T 
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   Effectof uniaxial stress on Jc at various fields 

The difference 

increases with  

applied field 

D.Uglietti, B.Seeber,  R. Flükiger, 

SuST, in press 



CAS, Erice, Italy, 25 April - 4 May, 2013 10 

 

   Stronger Criterion (0.01 mV/cm) leads to early Detection of Nanocracks  

 

Ic does not depend on strain 

criterion up to 0.6%/0.7% 

 

After releasing the strain, Ic 

depends strongly on the 

criterion 

Furukawa bronze Nb3Sn wire for 

ITER,  

dia. 0.8 mm; 4.2K/13T  

The irreversible strain limit (begin of  nanocracks) depends on the Ic criterion: 

Advantage for the Walters spiral 

D. Uglietti, V. Abächerli, R.Flükiger, 2004 
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   Tensile stress on Coated Conductor Tapes (AMSC 344 type) 

 

em = 0.53 % 

D. Uglietti, B. Seeber, R. Flükiger, SuST, in press 

Tape length: 0.8 m 

Uniaxial stress effects are also effective in HTS superconductors! 
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Case study 1 solution 

Margins (Summers formula) 
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Case study 1 solution 
Margins (Bottura’s formula) 



CAS, Erice, Italy, 25 April - 4 May, 2013 14 

   Transverse compressive stress on Jc of Nb3Sn wires 

Knowledge about the effect of transverse  

compressive stresses: Important for the safe  

design of  

 

    * High field magnets (B > 20 T) 

    * Large magnets, for   

                Fusion magnets (Tokamak) 

                Accelerators (LHC, LHC Upgrade) 

Measuring devices:  

         * Pacman, Univ. Twente 

         * Inverse Walters Spiral (Univ. Geneva)          

Transverse compressive stresses, i.e. in cables  

ø  40 mm, 1.5 mm thick steel  
Conduit rated current:  
 70 kA/11.8 T/4,6 K 
 1028 strands:Nb3Sn + 1/3 Cu 

ITER TF model coil: cable  
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Inverse Walters spiral (Univ. Geneva) 

Moving part 

Fixed part 

Specifications: - F  =  5KN 
               - I  = 1000 A 
               - Field:  21 T 

wire 

Stainless 

steel 

anvils 

Voltage 
 taps 

Nb3Sn 

 wire 
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  Jc vs. transverse compressive stress  st 

 

0                  100               200               300                400 

  Stress s (MPa)         

Tensile 

stress sa 

Compressive  

stress st 

J. Ekin (1986) 

W. Specking, R.Flükiger, (1987) 

st(Icm) << sa(Icm)  
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Conclusions : Nb3Sn wires 

•    Low and intermediate fields: Jc determined by flux pinning (grain size) 

• At high fields, Jc is determined by the value of Bc2 
 

•    Industrial round wires for magnets up to 23.5 T (1 GHz):  Nb3Sn 

•    The amount of Nb3Sn wire in a magnet increases strongly with the  

     produced field: at 20T, 5 times more Nb3Sn than for 12 T. 
 

•    Bronze route wires: best suited for «persistent mode» operation of NMR 

     magnets, in spite of their lower Jc value with respect to Internal Sn wires 
 
• Internal Sn (RRP) and Powder-in-Tube (PIT) wires satisfy the  
     conditions for LHC Upgrade accelerator magnet: 1’500 A/mm2 at 
     4.2K/15T. 
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2. MgB2 wires  
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The MgB2 system 

 

 

 

 

 

 

 

Hexagonal lattice  

a = 0.30834 nm 

c = 0.35213 nm 
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The binary Mg-B  Phase Diagram 

 

 
 

 
 
 

 
 

Binary Alloys Phase Diagrams, 2nd Edition, Ed. T. Massalski (A.S.M.International, 1990) 

MgB2 
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MgB2 applications 
 

Possible applications: 
 

* Level measurement of Liquid H2 containers  

* Hydrogen cooled current leads at T ≈ 20K (Kostyuk et al.) 

* LINK project (CERN): 13’000A current leads at ≈10K 

   (> 10’000 km of MgB2 wire): under investigation 

   (talk at CAS, last day: Amalia Ballarino) 

* Ignitor (under construction (Russia/Italy) 

* Wind generators ? First device under study 

* Poloidal field coils ? The question is discussed  



CAS, Erice, Italy, 25 April - 4 May, 2013 22 

     Determination of Bc2
// and Bc2

 in ex situ MgB2 wires 

B  

B// 

Bc2
// 

Bc2
  
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    Upper critical field and irreversibility field of MgB2  

Hc2 

(T) 

Larbalestier et al., 2002 

anisotropy 

Irreversibility field 

              MgB2 
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   Upper critical field of MgB2: films and wires 
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Films:          Bc2 = 60 T 

 

Bulk, wires: Bc2 = 30 - 40 T 

The reason for this difference is 

still unknown 
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  Upper critical fields of various superconductors 

    Comparison of Bc2 for various superconductors 
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MgB2 wires, ex situ processing   
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MgB2 wires: 3 preparation methods 
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Known MgB2 wire configurations 

 

Ex situ 

IMD 

In situ 

Tsukuba laboratory, Japan 
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The limitation of Jc in MgB2 due to anisotropy 

Strong anisotropy 
 

B // surface: Jc comparable 

to that of Nb3Sn 

 
B p surface: Jc much 

smaller than Nb3Sn. 

It is the limiting factor.  

MgB2 wires  

 

 
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  Jc of densified MgB2 wires after densification 

 

x5 
x8 

deformation 
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Densification machine for long s.c. wires 

Possible application of densification: Bi-2212, pnictides,.... 
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MgB2 wire: highest Jc at high fields  

Wire B3 (highest value): Jc (eng.) = 1.67 x 104 A/cm2 at 10 T 
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Comparison between various superconductors  
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The system MgB2 

Advantages:     Abundant constituents Mg and B 

      No chemical toxicity 

      Low cost material (comparable or lower to NbTi) 

      Applicable at 4.3 ≤ T ≤ 25K 

      Mechanically stable 

 

Disadvantages   At 4.2K, only applicable up to ~11 T  

      At 25K, only applicable up to ~ 5 T 

      Thermal stability: should be increased  
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Bi-2212 round wires 

3A. The HTS system Bi-2212 

3. Other round wires for high field accelerators 
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The system Bi-2212 

 

Possible applications  High field magnets        22.5T (20T+2.5T insert) 

   Accelerator magnets??   

    

   Advantage: Round wire, but * Ic still low 

                    * mechanically weak 

Main research efforts:  D. Larbalestier et al., Florida State University 

   Oxford Instruments 

Round Bi-2212 wires 
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Is Bi-2212 an alternative for high field dipoles? 
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Peter Lee’s plot about Jc values 
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Large bubbles form on melting and holding at Tmax 

 

Malagoli et al, SuST, 24, 075016 (2011), Kametani et al, SuST  24, 075009 (2011), Jiang 
et al. SuST 24 082001 (2011), Scheuerlein eta al, SuST 24, 115004 (2011).. 

T 

t 

Bi-2212 

Reaction 

scheme 
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J
E
(B) short sample data reported at 2004 ASC-Jacksonville
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Jc of Bi-2212: progress 
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Enhancement of Jc by compaction and slow heating 

Further enhancements are possible! 
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The system Bi-2212 

Advantages:      It is the only HTS materials available in round wires 

      Multifilamentary configuration: OK 

      Excellent thermal stability  

      At 4.2K, very high Jc values up to fields > 25 T 

      Jc values: close to level required by LHC Upgrade 

 

Disadvantages:  Important costs due to processing and Ag sheath 

      Poor mechanical stability: no solution yet for 

        enhancing the mechanical reinforcement 
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Pnictides 

FeAs based superconductors 

3B. Pnictides 
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Jc in Pnictide wires and tapes  

 

Examples: 122 Wires based on (Ba,K)Fe2As2 and (Sr,K)Fe2As2 

Very recent data obtained from 

 

*  J. Weiss, M. Hannion, E. Hellstrom, J. Jiang, F. Kametani, D. Larbalestier, A.  

    Polyanskii, and C. Tarantini, FSU, 2012 

*  Z. Gao, L. Wang, C. Yao, Y. Qi, C. Wang, X. Zhang, C. Wang, YW. Ma, ArXiv:1110.5784 

*  YW. Ma, ICSM2012 

*  I. Pallecchi, M. Tropeano, G. Lamura, M. Pani, M. Palombo, A. Palenzona, M. Putti,         

    to be published in Physica C 
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TEM of 122 pnictides 

TEM shows K-doped 122 has small grains, contains only little amounts of 

nonsuperconducting material, and has many clean GBs 

F. Kametani et al., FSU, ASC 2012 

J. Weiss, M. Hannion, E. Hellstrom, J. Jiang, F. Kametani, D. Larbalestier, A. Polyanskii, and C. Tarantini, Arkhiv, 2012  
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New synthesis method for 122 wires 

J. Weiss , E. Hellstrom et al.,2012 
Z. Gao et al., ArXiv 1110.5784 
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Comparison of HTS and pnictides 

What can we learn comparing HTS and pnictides 

(from the current carrying point of view)?  

• Very  low coherence lengths             very high  Hc2 values lengths in 

     both, HTS and pnictides.  

• Considerably lower anisotropy in pnictides reduces the effect of the 

     field orientation in the wrong direction (perp. to the wire surface) 

     (K. Tanabe, H. Hosono, Jap. J. Appl. Phys. 51 (2012) 010005). 

 

           it is possible to produce round pnictide wires with considerable Jc 

        values: 2 x 104 A/cm2 at 4.2K/ 10T (Y.W. Ma, 2011). 

This behavior, only 4 years after the discovery of pnictides, is 

encouraging for further research  
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Pnictides 

  Advantages   Abundant basis materials 

    Low costs of constituents and wires 

    Possibility to fabricate round wires 

    Applicable up to very high magnetic fields (30 T and more) 

   

 

  Disadvantages Toxicity of As and Se 

    Strong metallurgical problems to get homogeneity 

    Thermal stability: no data yet 
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HTS Coated Conductors 

4. The systems Y-123 or R.E.-123 («Coated Conductors») 

YBa2Cu3O7 - d  

Superconductor of the Future? 

Levitating YBaCuO sample at 77K 
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HTS Coated Conductors 

Typical shaping of a HTS 

Coated Conductor with the 

structure YBa2Cu3O7. 

The layered oxide structure causes a strong anisotropy in Bc2, Jc,……. 

              this induces a layered conductor configuration: Tapes  

(also called «Coated Conductors») 
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Two main deposition techniques 
(many variations used by various manufaturers)  

Rolling Assisted, 

Biaxially Textured Substrate 

RABITS  

IonBeam Assisted  

Deposition 

IBAD 
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Typical «Coated Conductor» tape architectures 

REBaCuO tape  

of SuperPower 
 
 

M. Rupich et al., AMSC, 2008 

Selvamanickam et al, 2008  

Other   Fujikura, Japan 

manufacturers:  Sunam, S. Corea 

  Sumitomo, Japan  

  BEST), Germany 

  ……………. 
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Summary: Fabrication width, production rate 

 
SEI: Fabrication width 30 mm,  

 No indication about production rate  
 

AMSC: Fabrication width 40 mm, Goal: 100 mm width, lengths:  > 500 m 

 > 1’000 km/year of 4 mm tape 
 

SuperPower: Fabrication width 12 mm, Lengths: 1’400 m 

 July 2010: > 150 km/year (?) 
 

Fujikura: Fabrication width 10 mm, lengths: > 1’000 m 

 2009: PLD/CeO2 (60 m/h), IBAD MgO (≤1,000 m/h), Y2O3 (500m/h), 

 Al2O3 (150 m/h), GdBaCuO (15 m/h) 
 

SuNAM: Fabrication width 12 mm, lengths: > 100 m (planned: 2’000 m) 

 Nov. 2009: Homoepitactic (70m/h),LMO buffer (50 m/h) 

 Goal: 2,000 km/year (assuming 100% yield)  
 

Bruker: Fabrication width 40 mm, lengths: ≤ 100 m (planned: > 1’000 m)  

 Goal: line speed (ABAD) 30 m/h and PLD (70 m/h) 
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Requirements to a REBaCuO tape 
 

Current density      * Carry optimized current in REBaCuO (dopants) 

 

Mechanical         * Substrate strong enough  at high temperature 

            to stand the  formation of REBaCuO 

         * Tape as a whole strong and flexible enough 

            to be wound into cable and coils at 300 K 

         * Tape must withstand longitudinal and  

            transverse stresses during operation 

 

Electrical stability  * Carry excess current in Ag layer and in  

           in Al, Cu,……. outer layers 

 

Thermal stability    * Enable heat transfer to the coolant 

 

AC losses        * Modify architecture to minimize AC losses 
           (Roebel, striations) 
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Towards higher Jcw  values  
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Ic-B-T property for 600A class C.C. 
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Higher critical current density 

Enhanced layer thickness: 

 

Fujikura reports  

6 mm thick layer with 1’040 A/cm-w 
(Deposition time not reported) 

M. Igarishi et al., EUCAS 2009 (Fujikura) 
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Reduction of AC losses  

 
* Roebel technique, 

* Striations, 

* Roebel + striations 
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Coated Conductors: Effect of tensile stress on Jc 

 

AMSC tape;  

measured with a  

Walters spiral 

 

 eirr = 0.51 % 

D. Uglietti, B. Seeber, V. Abächerli, W.L. Carter, R. Flükiger, SuST, 19(2006)869  

Effect of transverse stress: unknown 

4.2 K 

77 K 

50 K 
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What remains to be done in Coated Conductors ? 

 

• Higher homogeneity of Jc over whole tape length 

• Thicker layers 

• Reproducible production of > 1 km lengths 

• Enhanced pinning by nano-additives 

• Reduced anisotropy by nano-additives 

• Reduced costs  
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Annex II: Relaxation rates  

Annex I:  

Relaxation rates of various superconductors 
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Relaxation rates at 5 and 10 K  
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Persistent mode operation for NMR and IRM technology 

for a series of superconductors  

C. Senatore, P. Lezza, R. Flükiger, to be published 
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Relaxation rates at 20K 
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At 20K, the relaxation rates are 

sufficiently low for persistent 

mode operation of  

 

* Coated Conductors (for B >> 8T) 

* MgB2 (B ≤ 5T) 


