

Contents

Introduction

- Opened, closed, isolated systems
- Sign convention Intensive, extensive variables
- Evolutions Thermodynamic equilibrium

Laws of thermodynamics

- Energy balance
- Entropy Temperature
- Equations of state
- Balances applied on thermodynamic evolutions

Heat machines

- Principle
- Efficiencies, coefficients of performance
- Exergy
- Free energies

Phase transitions

- P-T diagram
- 1st and 2nd order transitions

INTRODUCTION

What do we consider in thermodynamics: the thermodynamic system

- A thermodynamic system is a precisely specified macroscopic region of the universe.
- It is limited by boundaries of particular natures, real or not and having specific properties.
- All space in the universe outside the thermodynamic system is known as the surroundings, the environment, or a reservoir.
- Processes that are allowed to affect the interior of the region are studied using the principles of thermodynamics.

Closed/opened system

- In open systems, matter may flow in and out of the system boundaries
- Not in closed systems. Boundaries are thus real: walls

Isolated system

• Isolated systems are completely isolated from their environment: they do not exchange energy (heat, work) nor matter with their environment.

Sign convention:

- Quantities going "into" the system are counted as positive (+)
- Quantities going "out of" the system are counted as negative (-)

CERN Accelerator School – 2013 Basic thermodynamics

INTRODUCTION

- > Thermodynamics gives:
 - a macroscopic description of the state of one or several system(s)
 - a macroscopic description of their behaviour when they are constrained under some various circumstances

To that end, thermodynamics:

- uses macroscopic parameters such as:
 - the pressure *p*
 - the volume V
 - the magnetization \hat{N}
 - o the applied magnetic field \hat{H}
- provides some other fundamental macroscopic parameters defined by some general principles (the <u>four laws of thermodynamics</u>):
 - o the temperature T
 - the total internal energy U
 - o the entropy S...
- expresses the constraints with some relationships between these parameters

INTRODUCTION

- Extensive quantities
 - are the parameters which are proportional to the mass *m* of the system such as : *V*, *M̂*, *U*, *S*...

⇒X=m·x

- Intensive quantities
 - are not proportional to the mass : p, T, \hat{H} ...
- Thermodynamic equilibrium
 - a thermodynamic system is in thermodynamic equilibrium when there are no net flows of matter or of energy, no phase changes, and no unbalanced potentials (or driving forces) within the system.
 - A system that is in thermodynamic equilibrium experiences no changes when it is isolated from its surroundings.
 - Thermodynamic equilibrium implies steady state.
 Steady state does not always induce thermodynamic equilibrium (ex.: heat flux along a support)

CERN Accelerator School – 2013 Basic thermodynamics

INTRODUCTION

- Quasi-static evolution:
 - It is a thermodynamic process that happens infinitely slowly.
 - It ensures that the system goes through a sequence of states that are infinitesimally close to equilibrium.

After a perturbation F/n, the time constant to return towards equilibrium (=relaxation time) is much smaller than the time needed for the quasi-static evolution.

CERN Accelerator School – 2013 Basic thermodynamics (5

INTRODUCTION

Reversible evolution:

- It is a thermodynamic process that can be assessed via a succession of thermodynamic equilibriums;
- by infinitesimally modifying some external constraints
- and which can be reversed without changing the nature of the external constraints

Example: gas expanded and compressed (slowly) in a cylinder

INTRODUCTION

- The laws of thermodynamics originates from the recognition that the random motion of particles in the system is governed by general statistical principles
 - The statistical weight
 Q denotes for the number of possible microstates of a system (ex. position of the atoms or molecules, distribution of the internal energy...)
 - The different microstates correspond to (are consistent with) the same macrostate (described by the macroscopic parameters *P*, *V*...)
 - The probability of the system to be found in one microstate is the same as that of finding it in another microstate
 - Thus the probability that the system is in a given macrostate must be proportional to Ω.

A GLANCE AT WORK

Work

- A mechanical work (*W*=*F*·*dx*) is achieved when displacements *dx* or deformations occur by means of a force field
- Closed system: Considering the gas inside the cylinder, for a quasi-static and reversible expansion or compression:

FIRST LAW OF THERMODYNAMICS

- Internal energy
 - It is a function of state such as: $U = \Sigma E_{c,micro} + \Sigma E_{p,micro}$ (Joules J)
 - It can thus be defined by macroscopic parameters
 For example, for a non-magnetic fluid, if p and V are fixed, U=U(p, V) is also fixed

First law of thermodynamics

Between two thermodynamic equilibriums, we have:

 $\delta U = \delta W + \delta Q$ (for a reversible process: $dU = \delta W + \delta Q$)

- Q: exchanged heat
- W: exchanged work (mechanical, electrical, magnetic interaction...)
- For a cyclic process (during which the system evolves from an initial state *I* to an identical final state *F*):

$$U_I = U_F \Longrightarrow \Delta U = U_F - U_I = 0$$

ENERGY BALANCE

- Between two thermodynamic equilibriums:
 - The total energy change is given by $\Delta E = \Delta E_{c,macro} + \Delta E_{p,macro} + \Delta U = W + Q$
 - if $\Delta E_{c,macro} = \Delta E_{p,macro} = 0 \implies \Delta U = W + Q$

• if work is only due to external pressure forces: $W_{epf} = \int -pdV$ $\Delta U = W_{epf} + Q$,

• and if V=cst (isochoric process), $\Delta U = Q$ (calorimetetry)

Opened system:

- $\Delta E = \Delta E_{c,macro} + \Delta E_{p,macro} + \Delta U = W_{shaft} + W_{flow} + Q$ $\Delta E = \Delta E_{c,macro} + \Delta E_{p,macro} + \Delta U + [pV]_{in}^{out} = W_{shaft} + Q$
- Function of state Enthalpy: H = U + pV (Joules J) $\Rightarrow \Delta E = \Delta E_{c,macro} + \Delta E_{p,macro} + \Delta H = W_{shaft} + Q$
- if $\Delta E_{c,macro} = \Delta E_{p,macro} = 0 \implies \Delta H = W_{shaft} + Q$

o and if *p=cste* (*isobaric process*), ∠*H* = Q

CERN Accelerator School – 2013 Basic thermodynamics

ENERGY BALANCE

(11)

SECOND LAW OF THERMODYNAMICS Entropy

- Entropy S is a function of state (J/K)
- For a system considered between two successive states: $\Delta S_{syst} = \Delta S = \Delta S^e + S^i$ ΔS^e relates to the heat exchange $\Delta S^e = \int \frac{\delta Q}{T}$

 - S^{i} is an entropy production term: $S^{i} = \Delta S_{syst} + \Delta S_{surroundings}$
 - For a reversible process, $S^i = 0$; for an irreversible process: $S^i > 0$
 - For an adiabatic ($\delta Q = 0$) and reversible process, $\Delta S = 0 \Rightarrow$ isentropic
- Entropy of an isolated system (statistical interpretation)
 - $\Delta S^e = 0 \Longrightarrow \Delta S_{syst} = S^i \ge 0$
 - An isolated system is in thermodynamic equilibrium when its state does not change with time and that $S^i = 0$.
 - $S=k_{R}\cdot ln(\Omega)$
 - Ω is the number of observable microstates. It relates to the probability of finding a given macrostate.
 - o If we have two systems A and B, the number of microstates of the combined \Rightarrow S=S_A+S_B the entropy is additive systems is $\Omega_A \cdot \Omega_B$
 - Similarly, the entropy is proportional to the mass of the system (extensive):

```
if B=m \cdot A, \Omega_B = (\Omega_A)^m and S_B = m \cdot [kB \cdot ln(\Omega_A)] = m \cdot S_A
CERN Accelerator School – 2013
```

Basic thermodynamics

SECOND LAW OF THERMODYNAMICS

The principle of increase in entropy:

 The entropy of an isolated system tends to a maximum value at the thermodynamic equilibrium

Example 1: gas in a box

 $\Omega_{I} << \Omega_{F}$ $\Rightarrow S_{I} << S_{F}$

- It thus provides the direction (in time) of a spontaneous change
- If the system is not isolated, we shall have a look at Ω or S of the surroundings and this principle becomes not very convenient to use...
- NB: it is always possible to consider a system as isolated by enlarging its boundaries...

(13)

CERN Accelerator School – 2013 Basic thermodynamics

THIRD LAW OF THERMODYNAMICS

Boltzmann distribution:

The probability that the system *Syst* has energy *E* is the probability that the rest of the system *Ext* has energy E_0 -*E* $\Rightarrow \ln \Omega(E_0$ -*E*) = $1/k_B S$, $S=f(E_{ext}=E_0-E)$

As
$$E \ll E_0$$
, $\ln \Omega(E - E_0) = \frac{1}{k_B} S(E_0) - \frac{1}{k_B} E\left(\frac{\partial S}{\partial E_0}\right)_{E=0}$

And as
$$\left(\frac{\partial S_{ext}}{\partial E_0}\right)_{E=0} = \frac{1}{T}$$
, $\ln \Omega(E - E_0) = \Omega(E_0) - \frac{E}{k_B T}$

Systi E, Ω Ext: E_{ext}, Ω_{ext} $S_0 = \text{Syst} \cup \text{Ext:}$ $E_0 = E + E_{ext}, \Omega_0 = \Omega \Omega_{ext}$

(15)

 $\Omega(E - E_0) = cst \cdot e^{\left(\frac{1}{k_BT}\right)} \quad \text{(as T} \to 0\text{, state of minimum energy)}$

Zeroth law of thermodynamics:

- A the absolute zero of temperature, any system in thermal equilibrium must exists in its lowest possible energy state
- Thus, if $\Omega = 1$ (the minimum energy state is unique) as $T \rightarrow 0$, S = 0
- An absolute entropy can thus be computed

EQUATIONS of STATE

Relating entropy to variable of states

• U and S are functions of state ; therefore:

$$dU = \left(\frac{\partial U}{\partial S}\right)_{V} dS + \left(\frac{\partial U}{\partial V}\right)_{S} dV \text{, for a reversible process}$$
$$dU = TdS + \left(\frac{\partial U}{\partial V}\right)_{S} dV \implies p = -\left(\frac{\partial U}{\partial V}\right)_{S} \implies \overline{dU = TdS - pdV} \qquad dS = \frac{p}{T}dV + \frac{1}{T}dU$$

The relation between p, V and T is called the equation of state

✓ Ideal gas $\frac{p}{T} = n \frac{N_A k_B}{V} = \frac{nR}{V} = \frac{mR}{M_{mol}V} = \frac{mr}{V}, \quad n: \text{ number of moles (mol)} \quad pv = rT$ $N_A = 6.022 \cdot 10^{23} \text{ mol}^{-1}: \text{ the Avogadro's number}$ $k_B = 1.38 \cdot 10^{-23} \text{ J} \cdot \text{K}^{-1}: \text{ the Boltzmann's constant}$ $R = 8.314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}: \text{ the gas constant}$

Van der Waals equation

a: effect of the attractions between the molecules*b*: volume excluded by a mole of molecules

 $\binom{p + \frac{a}{v^2}}{(v - b)} = rT$ Other models for the equations of state exist CERN Accelerator School – 2013 Basic thermodynamics

P, V DIAGRAM

Isotherms of a Van der Waals gas

(17)

HEAT CAPACITIES

• The amount of heat that must be added to a system <u>reversibly</u> to change its temperature is the heat capacity C, $C = \delta Q/dT$ (J/K)

• The conditions under which heat is supplied must be specified: $C_i = \left(\frac{\partial Q}{\partial T}\right)_i = T\left(\frac{\partial S}{\partial T}\right)_i$ • The conditions under which heat is supplied must be specified: $C_i = \left(\frac{\partial Q}{\partial T}\right)_i = T\left(\frac{\partial S}{\partial T}\right)_i$ • at constant pressure: $C_p = T\left(\frac{\partial S}{\partial T}\right)_p \Rightarrow S(T, p) = \int_0^T \frac{C_p}{T} dT$ $C_p = \left(\frac{\partial H}{\partial T}\right)_p \Rightarrow \left[\Delta H = \int C_p dT\right]$ (known as sensible heat) • at constant volume: $C_V = T\left(\frac{\partial S}{\partial T}\right)_V \Rightarrow S(T, V) = \int_0^T \frac{C_V}{T} dT$ $C_V = \left(\frac{\partial U}{\partial T}\right)_V \Rightarrow \left[\Delta U = \int C_V dT\right]$ (known as sensible heat) • Ratio of heat capacities: $\boxed{\gamma = \frac{C_p}{C_V} = \left(\frac{\partial V}{\partial p}\right)_T \left(\frac{\partial V}{\partial p}\right)_S^{-1}}_S$ • Mayer's relation: $C_p - C_V = T\left(\frac{\partial p}{\partial T}\right)_V \left(\frac{\partial V}{\partial T}\right)_p \Rightarrow \boxed{C_p - C_V = nR}$ for an ideal gas $\boxed{C_p = n\frac{R}{\gamma-1} \text{ and } C_p = n\frac{M}{\gamma-1}}_S$

USE OF THERMODYNAMIC RELATIONS

Maxwell relations

• As if Z=Z(x,y), P=P(x,y), Q=Q(x,y) and dZ = Pdx + Qdy, we can write:

$$\left(\frac{\partial P}{\partial x}\right)_{y} = \left(\frac{\partial Q}{\partial y}\right)_{x}$$

• then: $\left(\frac{\partial T}{\partial V}\right)_{s} = -\left(\frac{\partial p}{\partial S}\right)_{V}$; $\left(\frac{\partial T}{\partial p}\right)_{s} = \left(\frac{\partial V}{\partial S}\right)_{p}$; $\left(\frac{\partial p}{\partial T}\right)_{V} = \left(\frac{\partial S}{\partial V}\right)_{T}$; $\left(\frac{\partial S}{\partial p}\right)_{T} = -\left(\frac{\partial V}{\partial T}\right)_{p}$

Adiabatic expansion of gas:

During adiabatic expansion of a gas in a reciprocating engine or a turbine (turbo-expander), work is extracted and gas is cooled.

For a reversible adiabatic $\left(\frac{\partial T}{\partial p}\right)_{s} = -\left(\frac{\partial T}{\partial S}\right)_{p}\left(\frac{\partial S}{\partial p}\right)_{T} = \left(\frac{\partial T}{\partial S}\right)_{p}\left(\frac{\partial V}{\partial T}\right)_{p} = \frac{T}{C_{p}}\left(\frac{\partial V}{\partial T}\right)_{p}$

20

As
$$C_p > 0$$
 and $(\partial V / \partial T)_p > 0 \Rightarrow (\partial T / \partial p)_s > 0$. Thus, $dp < 0 \Rightarrow dT < 0$.

 \Rightarrow Adiabatic expansion always leads to a cooling. CERN Accelerator School – 2013

Basic thermodynamics

USE OF THERMODYNAMIC RELATIONS

Joule-Kelvin (Joule-Thomson) expansion:

A flowing gas expands through a throttling valve from a fixed high pressure to a fixed low pressure, the whole system being thermally isolated

CERN Accelerator School – 2013 Basic thermodynamics

USE OF THERMODYNAMIC RELATIONS

Joule-Kelvin (Joule-Thomson) expansion:

Inversion temperature:

For helium (He⁴):

The maximum inversion temperature is about 43K

- In helium liquefier (or refrigerator), the gas is usually cooled below the inversion temperature by adiabatic expansion (and heat transfer in heat exchangers) before the final liquefaction is achieved by Joule-Thomson expansion.
- Nitrogen and oxygen have inversion temperatures of 621 K (348 °C) and 764 K (491 °C).

22

(21)

THERMODYNAMIC REVERSIBLE PROCESSES for an ideal gas							
Type of state change	ISOCHORIC	ISOBARIC	ISOTHERMAL	ADIABATIC	POLYTROPIC		
Feature	v = cst	p = cst	t = cst	δq = 0			
p-v diagram							
Eq.	$\frac{p_B}{p_A} = \frac{T_B}{T_A}$	$\frac{v_B}{v_A} = \frac{T_B}{T_A}$	$\rho_A v_A = \rho_B v_B = RT_A = cst$	$p_A v_A^{\gamma} = p_B v_B^{\gamma} = cst$ $\gamma = c_p / c_v$	$p_A v_A^n = p_B v_B^n = cst$		
Heat (J/kg)	$q_{AB} = u_B - u_A = \int_{T_A}^{T_B} c_V dT$ $= c_V (T_B - T_A)$	$q_{AB} = h_B - h_A = \int_{T_A}^{T_B} c_p dT$ $= c_p (T_B - T_A)$	$q_{AB} = rT \ln \frac{V_B}{V_A}$	$q_{AB} = 0$	$q_{AB} = \frac{\rho_B v_B - \rho_A v_A}{\gamma - 1} + \rho_A v_A \ln \frac{v_B}{v_A}$		
Work (J/kg)	$W_{AB} = 0$	$w_{AB} = -p(v_B - v_A)$ $= c_p(T_B - T_A)$	$w_{AB} = \rho_A v_A \ln \frac{v_B}{v_A} = \rho_A v_A \ln \frac{\rho_A}{\rho_B}$	$w_{AB} = \frac{r}{\gamma - 1} (T_B - T_A)$ $= \frac{p_A v_A}{\gamma - 1} \left[1 - \left(\frac{p_B}{p_A}\right)^{\frac{\gamma - 1}{\gamma}} \right]$	$w_{AB} = \frac{p_B v_B - p_A v_A}{n-1} \ n \neq 1$		
∆u (J/kg)	$u_{\rm B}-u_{\rm A}=c_{\rm V}(T_{\rm B}-T_{\rm A})$	$u_{\scriptscriptstyle B}-u_{\scriptscriptstyle A}=c_{\scriptscriptstyle V}(T_{\scriptscriptstyle B}-T_{\scriptscriptstyle A})$	$u_{\rm B}-u_{\rm A}=0$	$w_{AB} = c_V (T_2 - T_1)$ $= \frac{\rho_B v_B - \rho_A v_A}{\gamma - 1}$			
∆s (J/kg)	$s_{\scriptscriptstyle B} - s_{\scriptscriptstyle A} = c_{\scriptscriptstyle V} \ln \frac{\rho_{\scriptscriptstyle B}}{\rho_{\scriptscriptstyle A}}$	$S_{B} - S_{A} = c_{p} \ln \frac{T_{B}}{TA}$ $= c_{p} \ln \frac{V_{B}}{V_{A}}$	$S_B - S_A = r \ln \frac{V_B}{V_A}$	$s_B - s_A = 0$	$\Delta s_{AB} = r \frac{\gamma - n}{\gamma - 1} \ln \frac{v_B}{v_A}$		

CERN Accelerator School – 2013 Basic thermodynamics

HEAT MACHINES

NB: in the case of a heat pump, if Q_2 is the useful heat transfer (from the cold reservoir) then the heat pump is a refrigerator.

- Over one cycle:
 - Energy balance (1st law): $\Delta U = U_1 U_1 = 0 = W + Q_C + Q_H$
 - Entropy balance (2nd law): $\Delta S = 0 = \Delta S^e + S^i = Q_C / T_c + Q_H / T_H + S^i \ge 0$

(23)

HEAT MACHINES

Engine cycle:

- $Q_{\mu} + Q_{c} = -W$
- $Q_{\mu} = -Q_{c} W$
- $Q_H = -T_H / T_C \cdot Q_C T_H \cdot S^i$
- If -W > 0 (work being given by the engine) and if $T_H > T_C$ then $Q_H > 0$ and $Q_C < 0$

Engine efficiency:

HEAT

SERVOI

THERMAL

MACHINE

Considered domain

 Q_H

HEAT

RESERVOIR

 Q_C

(25)

CERN Accelerator School - 2013 Basic thermodynamics

HEAT MACHINES

Refrigerator efficiency:

• Coefficient of perfomance:

• As
$$\frac{Q_C}{Q_H} = -\frac{T_C}{T_H} - \frac{T_C S^i}{Q_H}$$
,
CERN Accelerator School – 2013
Basic thermodynamics

 $|COP_{Cooling}| = \frac{1}{\frac{T_c}{T_\mu} - 1 + \frac{T_c S^i}{Q_\mu}} \le \frac{1}{\frac{T_H}{T_c} - 1}$

HEAT MACHINES

- Sources of entropy production and destruction of exergy:
 - Heat transfer (with temperature difference)
 - Friction due to moving solid solid components
 - Fluid motions (viscous friction, dissipative structures)
 - Matter diffusion
 - Electric resistance (Joule effect)
 - Chemical reactions

CERN Accelerator School – 2013 Basic thermodynamics

HEAT MACHINES

The Carnot cycle

• Cyclic process:

upon completion of the cycle there has been no net change in state of the system

- 2 isothermal processes (reversibility means that heat transfers occurs under very small temperature differences)
- o 2 adiabatic processes (reversibility leads to isentropic processes)
- 1st law of thermodynamics over cycle: $\Delta U = U_1 U_1 = 0 = W + Q_{12} + Q_{34}$

(27)

p↑ I=F

CERN Accelerator School – 2013 Basic thermodynamics

HEAT MACHINES

> The Carnot cycle

- Efficiency of a Carnot engine:
- Coefficient of performances of Carnot heat pump:
- Coefficient of performances of Carnot refrigerator: $COP_{Heating} = \frac{T_C}{T_H T_C}$
- Comparison of real systems relatively with the Carnot cycle relative efficiencies and coefficients of performance
 - Relative efficiencies:
 - Engine:

$$\eta_r = \frac{\eta}{\eta_c} = 1 - \frac{T_c S^i}{Q_H \left(1 - \frac{T_c}{T_H}\right)}$$

• Heat pump and refrigerator:

 $\eta_{\rm C} = 1 - \frac{T_{\rm C}}{T_{\rm H}} < 1$ $COP_{\rm Heating} = \frac{T_{\rm H}}{T_{\rm H} - T_{\rm C}}$

CERN Accelerator School – 2013 Basic thermodynamics

HEAT MACHINES

Carnot efficiency and coefficient of performance

(29)

EXERGY

- Heat and work are not equivalent: they don't have the same "thermodynamic grade" :
 - (Mechanical, electric...) work can be integrally converted into heat
 - o Converting integrally heat into work is impossible (2nd law)
- Energy transfers implies a direction of the evolutions:
 - Heat flows from hot to cold temperatures;
 - Electric work from high to low potentials;
 - o Mass transfers from high to low pressures...
- Transfers are generally irreversible.
- Exergy allows to "rank" energies by involving the concept of "usable" or "available" energy which expresses
 - the potentiality of a system (engine) to produce work without irreversibility evolving towards equilibrium with a surroundings at $T_{REF}=T_a$ (ambiant)
 - the necessary work to change the temperature of a system (refrigerator) compared to the natural equilibrium temperature of this system with the surroundings (T_q).

$$Ex = \int \delta Q \left(1 - \frac{T_a}{T} \right)$$
 Equivalent work of the transferred heat $Ex = W$
 $Ex = H - T_a S$

CERN Accelerator School – 2013 Basic thermodynamics

EXERGY

Exergetic balance of opened systems:

$$\Delta E \mathbf{x} = \Delta H - T_a \Delta S = W_{shaft} + Q \left(1 - \frac{T_a}{T} \right) - T_a S^i \qquad T_a S^i \ge 0 ;$$

Usuable work and potentially usuable work is given by the exergetic change Usable energy is maximum if the system has no irreversibility: $T_a S^i = 0$.

> Exergetic balance of closed systems: $\Delta U - T_a \Delta S = W + Q \left(1 - \frac{T_a}{T}\right) - T_a S^i$

Exergetic balance of heat machines (thermodynamic cycles):

$$0 = W + Q \left(1 - \frac{T_a}{T} \right) - T_a S$$

Exergetic efficiency:

$$\eta_{\text{exergetic}} = \frac{\Delta Ex \ real}{\Delta Ex \ rev}$$

CERN Accelerator School – 2013 Basic thermodynamics

MAXWELL THERMODYNAMIC RELATIONS

		As dU = TdS – pdV
> ENTHALPY		
• <i>H</i> = <i>U</i> + <i>pV</i>	\Rightarrow	dH = TdS + Vdp
➢ HELMHOTZ FREE ENE	RGY	
● <i>F</i> = <i>U</i> − <i>TS</i>	\Rightarrow	dF = -pdV - SdT
➢ GIBBS FREE ENERGY		
• $G = U - TS + pV$	\Rightarrow	dG = -SdT + Vdp

FREE ENERGY AND EXERGY

- Considering an isothermal $(T=T_0)$ and reversible thermodynamic process:
 - $dU = \delta W + T_0 dS \Longrightarrow \delta W = dU T_0 dS = dF$
 - o the work provided (<0) by a system is equal to the reduction in free energy
 - o Here (reversible process) it is the maximum work that can be extracted ;
- Similarly, for an opened system:
 - o $dH = \delta W_{shaft} + T_0 dS \Longrightarrow \delta W_{shaft} = dH T_0 dS = dG$
 - the maximum work (other than those due to the external pressure forces) is equal to the reduction of Gibbs free energy.
- In these cases, all energy is free to perform useful work because there is no entropic loss

CERN Accelerator School – 2013 Basic thermodynamics

DIRECTION OF SPONTANEOUS CHANGE

- Spontaneous change of a thermally isolated system, :
 - $\circ \Rightarrow$ increase of entropy
 - o \Rightarrow at thermodynamic equilibrium, entropy is a maximum
- For non isolated system:
 - o System in thermal contact with its surroundings
 - Assumptions:
 - heat flow from the surroundings to the system
 - surroundings EXT at *T=Text=cst* (large heat capacity)
 - $\Delta S_{total} = \Delta S + \Delta S_{ext} \ge 0$
 - $\delta S_{ext} = -\delta Q/T_{Ext}$
 - For the system: $\delta U = \delta Q$ and thus $\delta (U T_0 S) \le 0$
 - Thus spontaneous change (heat flow) is accompanied by a reduction of U-T₀S
 At equilibrium, this quantity must tend to a minimum
 Therfore, in equilibrium, the free energy F=U-TS of the system tends to a minimum
 - System in thermal contact with its surroundings and held at constant pressure:
 - The Gibbs free energy E-TS+pV tends to a minimum at equilibrium

PHASE DIAGRAM: p-T DIAGRAM

Gibbs' phase rule: gives the number of degrees of freedom (number of independent intensive variables)

saturated vapour tension: pressure of the gas in equilibrium with the liquid

PHASE EQUILIBRIA

Considering point P: gas and liquid phases coexisting at p and T (constant)

- o The equilibrium condition is that $G \rightarrow$ minimum
- o Considering a small quantity of matter δm transferring from the liquid to the gas phase
- o The change in total Gibbs free energy is: $(g_{gas}-g_{liq})\cdot\delta m \Rightarrow$ minimum for $g_{gas}=g_{liq}$
- Considering a neighbouring point Q on the saturated vapour tension curve:

$$g_{gas}(Q) = g_{gas}(P) + \left(\frac{\partial g_{gas}}{\partial p}\right)_{T} dp + \left(\frac{\partial g_{gas}}{\partial T}\right)_{p} dT = g_{gas}(P) + v_{gas} dp - s_{gas} dT$$
$$g_{liq}(Q) = g_{liq}(P) + \left(\frac{\partial g_{liq}}{\partial p}\right)_{T} dp + \left(\frac{\partial g_{liq}}{\partial T}\right)_{p} dT = g_{liq}(P) + v_{liq} dp - s_{liq} dT$$

and

$$0 = (v_{gas} - v_{liq})dp - (s_{gas} - s_{liq})dT$$

• The slope of the saturated vapour tension curve is thus given by:

 $\frac{dp}{dT} = \frac{(s_{gas} - s_{liq})}{(v_{gas} - v_{liq})} = \frac{L_{vap}}{T(v_{gas} - v_{liq})}$ which is the Clausius-Clapeyron equation

 L_{vap} (>0 as Δ S>0) is the specific latent heat for the liquid \rightarrow gas transition (vaporization).

$$\Delta H = Q = m \cdot L_{vap}$$

 L_{vap} It is the heat required to transform 1kg of one phase to another (at constant T and p).

(39)

40

NB1- Critical point: $L_{vap} \rightarrow 0$ as $(p,T) \rightarrow (p_C,T_C)$; NB2- At the triple point: $L_{vap} = L_{melt} = L_{sub}$

CERN Accelerator School – 2013 Basic thermodynamics

THERMODYNAMICS OF MAGNETIC MATERIALS

Type I superconductor phase transition:

- Similarly with the liquid-gas phase transition, along the phase boundary, equilibrium (constant \hat{H} and T) implies that the total magnetic Gibbs free energy is minimum and thus that $\hat{G}=U-TS \mu_0 \hat{H}M$ is equal in the two phases:
- As $d\hat{G} = -SdT \mu_0 M d\hat{H}$, in the Meissner state $(\hat{H} < \hat{H}_c)$ we have:

$$\hat{G}_{s}(H,T) = \hat{G}_{s}(0,T) - \int_{0}^{\hat{H}} \mu_{0} \hat{M} d\hat{H} = \hat{G}_{s}(0,T) + \int_{0}^{\hat{H}} \mu_{0} \hat{H} d\hat{H} = \hat{G}_{s}(0,T) + \frac{1}{2} \mu_{0} \hat{H}^{2}$$

- In normal state, the magnetic Gibbs free energy is practically independent of \hat{H} as the material is penetrated by the field: $\hat{G}_n(H,T) = \hat{G}_n(0,T) = \hat{G}_n(T)$
- Therefore, the critical field \hat{H}_{c} of the superconductor (phases coexistence) is given by:

$$\hat{G}_n(T) - \hat{G}_s(0,T) = \frac{1}{2} \mu_0 \hat{H}_c^2$$

- Analogy of the Clausius-Clapeyron equation: $\frac{d\hat{H}_{c}}{dT} = \frac{L}{T\mu_{0}\hat{M}_{c}} = -\frac{L}{T\mu_{0}\hat{H}_{c}}$
 - As $\hat{H}_c \rightarrow 0$, $d\hat{H}_c/dT$ tends to a finite value. Thus as $\hat{H}_c \rightarrow 0$, $L \rightarrow 0$.
 - In zero applied magnetic field, no latent heat is associated with the superconducting to normal transition

THERMODYNAMICS OF MAGNETIC MATERIALS

First and second-order transitions:

 First-order phase transition is characterized by a discontinuity in the first derivatives of the Gibbs free energy (higher order derivatives discontinuities may occur).

o Ex. : liquid \rightarrow gas transition:

	07 \ 0	
dp _	$(\mathbf{S}_{gas} - \mathbf{S}_{liq})$	L
dT	$(V_{gas} - V_{liq})$	$\overline{T(V_{gas} - V_{liq})}$

- discontinuity in S=-($\partial G / \partial T$)_p. Latent heat is involved in the transition.
- Discontinuity in $(\partial G / \partial V)_{\tau}$
- Second-order phase transition has no discontinuity in the first derivatives but has in the second derivatives of the Gibbs free energy
 - o Ex. : liquid \rightarrow gas transition at the critical point:
 - as v_{qas} - $v_{lig} \rightarrow 0$ and dp/dT is finite, $L_{vap} \rightarrow 0 \Rightarrow s_{qas}$ - $s_{lig} \rightarrow 0$ and $S=-(\partial G/\partial T)_p$ is continuous
 - Ex.: He I \rightarrow He II (superfluid) transition:
 - heat capacity: $C_p = T(\partial S / \partial T)_p = -T(\partial^2 G / \partial^2 T)_p$

..... continuous ype I superconductor \rightarrow normal transition if no magnetic field is applied (\Rightarrow discontinuity in C_p) higher order transition exists ator School – 2013 lynamics • Type I superconductor \rightarrow normal transition if

NB: higher order transition exists

CERN Accelerator School – 2013 Basic thermodynamics

REFERENCES

- PÉREZ J. Ph. and ROMULUS A.M., Thermodynamique: fondements et applications, Masson, ISBN: 2-225-84265-5, (1993).
- VINEN W. F., A survey of basic thermodynamics, CAS, Erice, Italy May (2002).

 $T\lambda = 2,172 \text{ K}$

