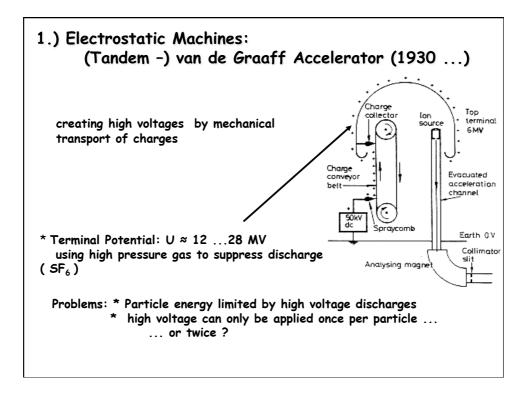
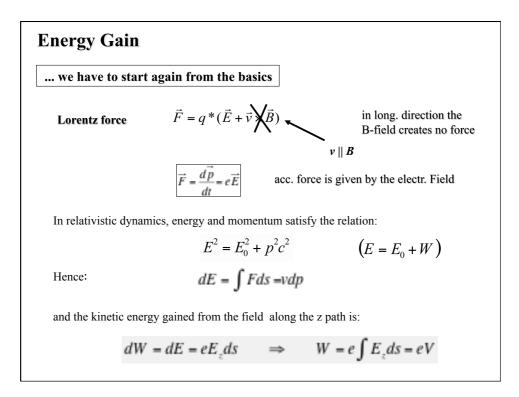
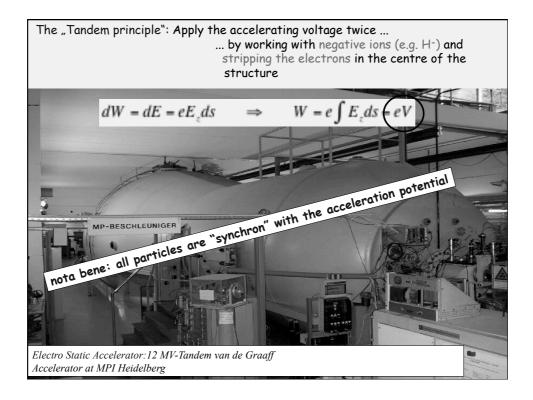
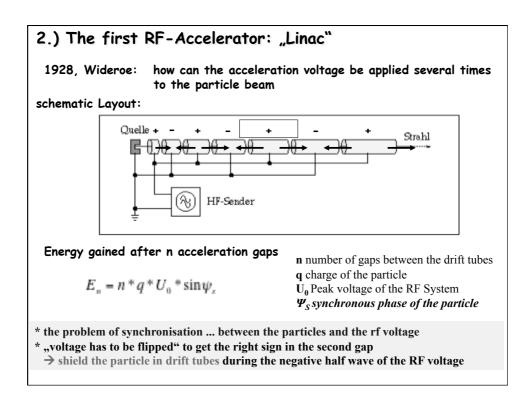


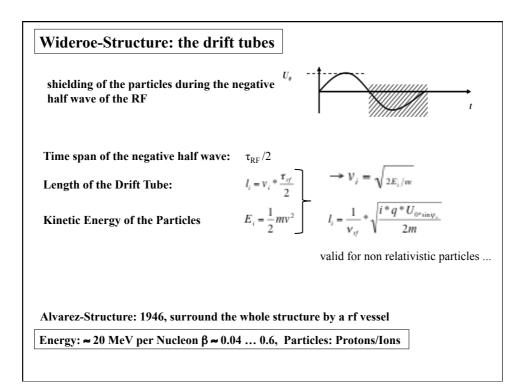
Bibliograph	y:
1.) P. Bryant, K. Jo	hnsen: The Principles of Circular Accelerators and Storage Rings Cambridge Univ. Press
	Physics of Particle Accelerators and Synchrotron Radiation Facilicties, Teubner, Stuttgart 1992
3.) Peter Schmüser:	Basic Course on Accelerator Optics, CERN School: 5 th general acc. phys. course CBA
4.) Bernhard Holzer:	School: 5th general acc. phys. course Lattice Design, CERN Acc. http://cas.web.cern.ch. cern report: CEBN Procision of CERN/lectures-zeuthen.htm cern report: CEBN Procision of Engineering,
5.) A.Chao, M.Tigner	r: Handberg CAPerator Physics and Engineering, LeDuff Vorld Scientific, 1999. Vand Design of Chargged Particle Beams Wiley-VCH, 2008
6.) Martin B JOR	Viley-VCH, 2008
	er: Physik der Teilchenbeschleuniger, Springer Verlag 1997
8.) Mathew Sands: T	The Physics of e+ e- Storage Rings, SLAC report 121, 1970
	Syphers : An Introduction to the Physics of Particle ccelerators, SSC Lab 1990

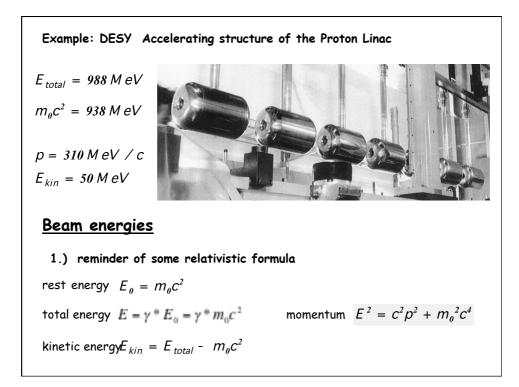


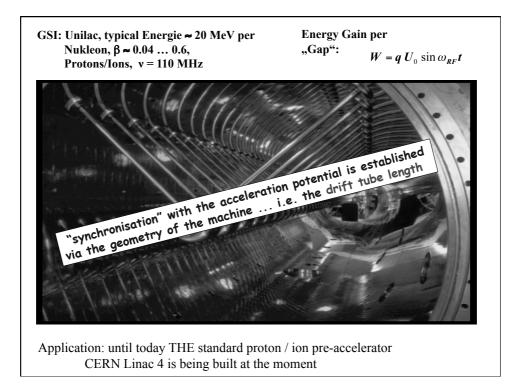


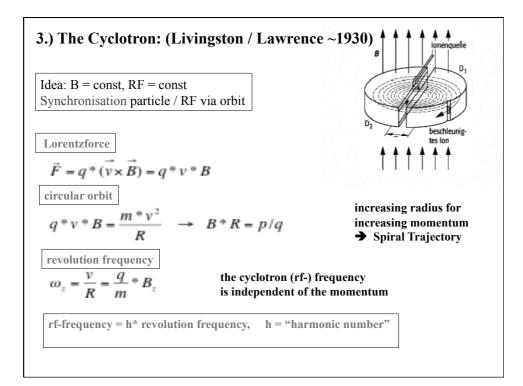


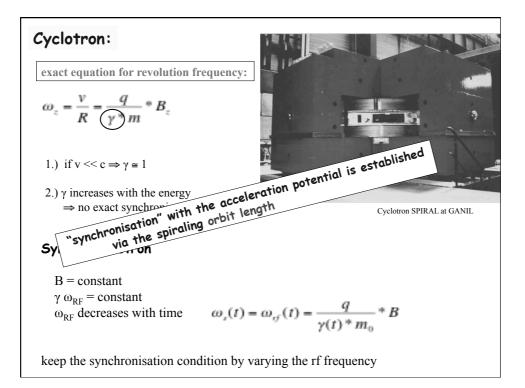


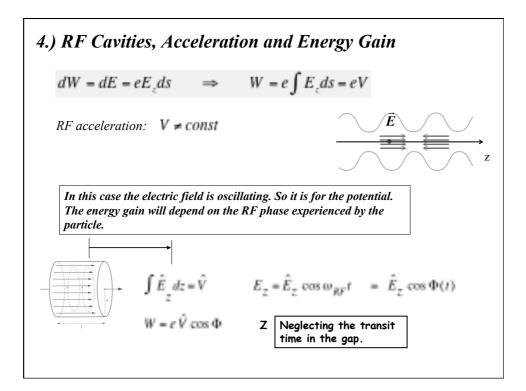


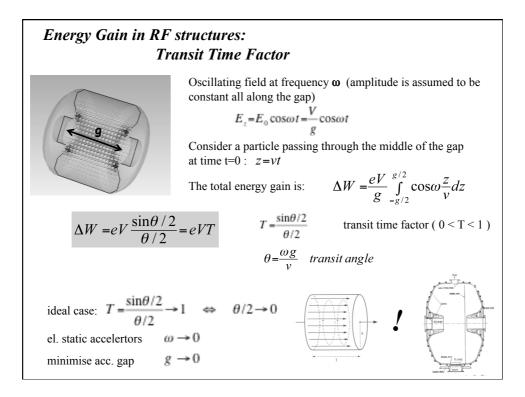


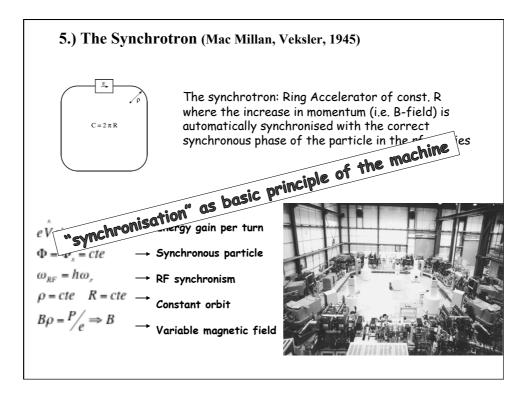


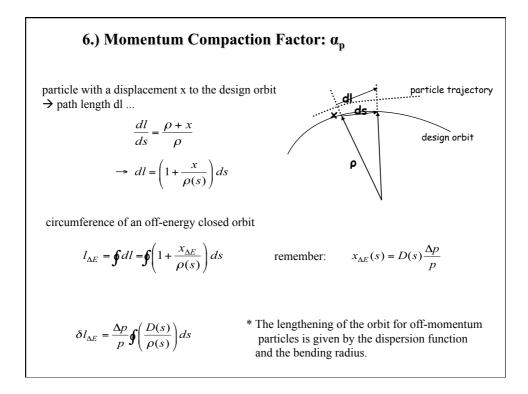












Definition:

$$\frac{\delta I_{e}}{L} = \alpha_{p} \frac{\Delta p}{p}$$

$$\Rightarrow \alpha_{p} = \frac{1}{L} \oint \left(\frac{D(s)}{\rho(s)} \right) ds$$
For first estimates assume:

$$\frac{1}{\rho} = const.$$

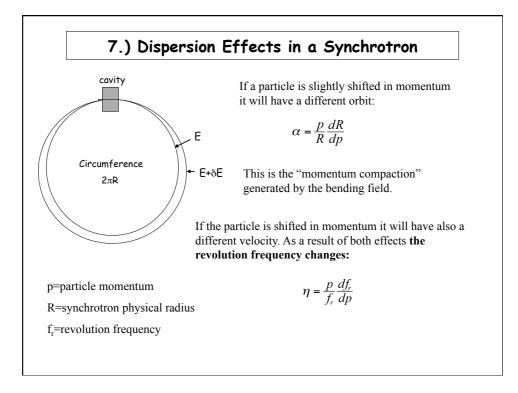
$$\int_{dipoles} D(s) ds \approx I_{\Sigma(dipoles)} \cdot \langle D \rangle_{dipole}$$

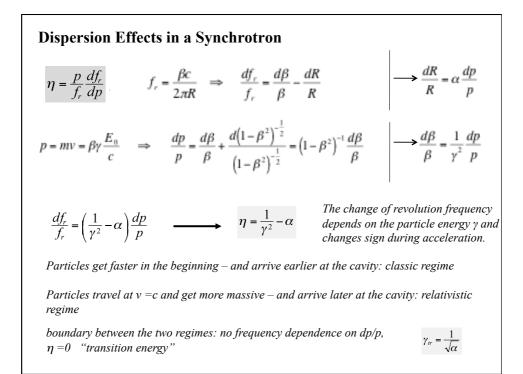
$$\alpha_{p} = \frac{1}{L} I_{\Sigma(dipoles)} \cdot \langle D \rangle \frac{1}{\rho} = \frac{1}{L} 2\pi \rho \cdot \langle D \rangle \frac{1}{\rho} \quad \Rightarrow \quad \alpha_{p} \approx \frac{2\pi}{L} \langle D \rangle \approx \frac{\langle D \rangle}{R}$$
Assume:

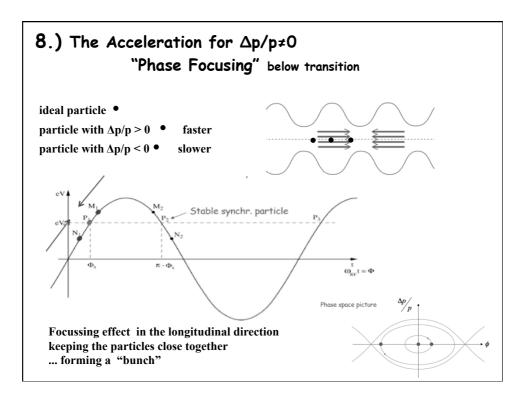
$$\nu \approx c$$

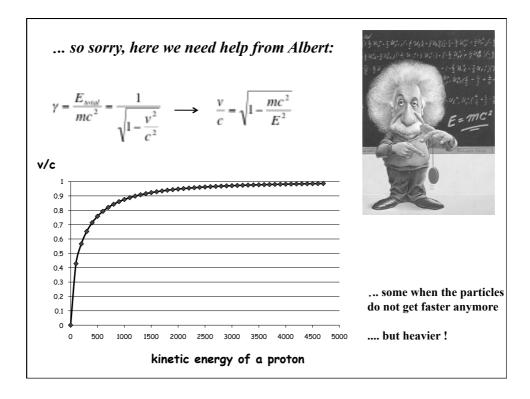
$$\Rightarrow \quad \frac{\delta T}{T} = \frac{\delta I_{e}}{L} = \alpha_{p} \frac{\Delta p}{p}$$

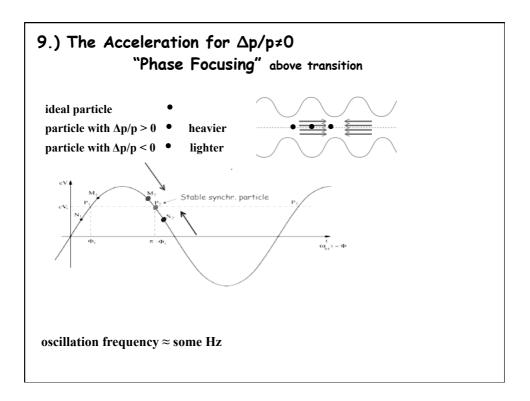
$$a_{p} \text{ combines via the dispersion function the momentum spread with the longitudinal motion of the particle.$$

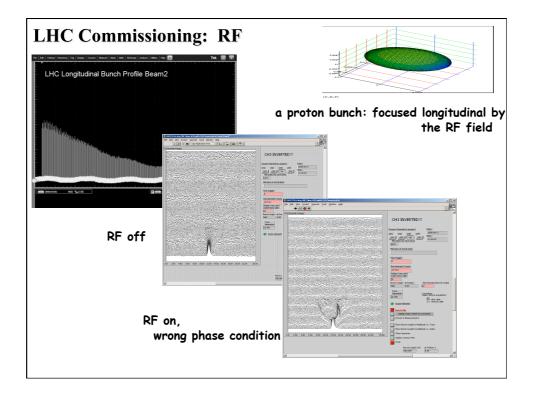










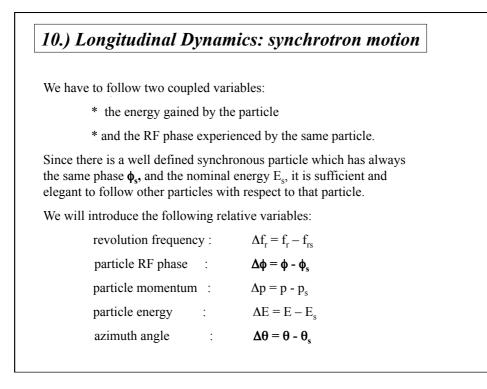


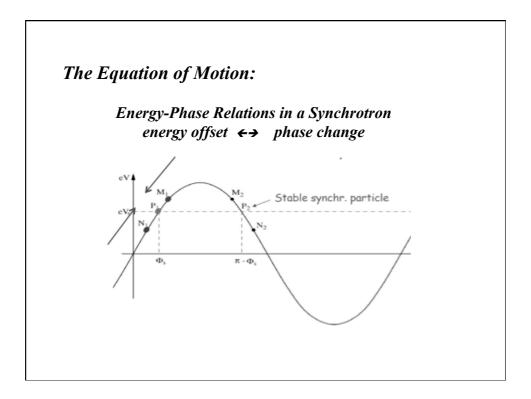
... and how do we accelerate now ??? with the dipole magnets !

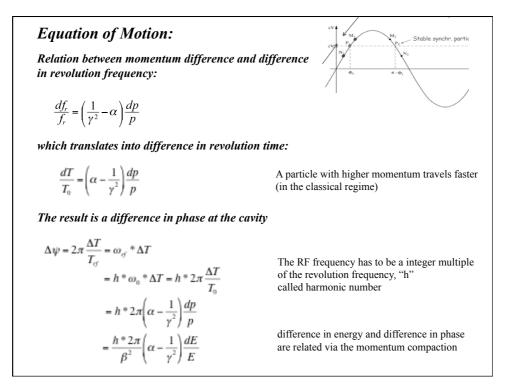
Energy ramping is simply obtained by varying the B field:

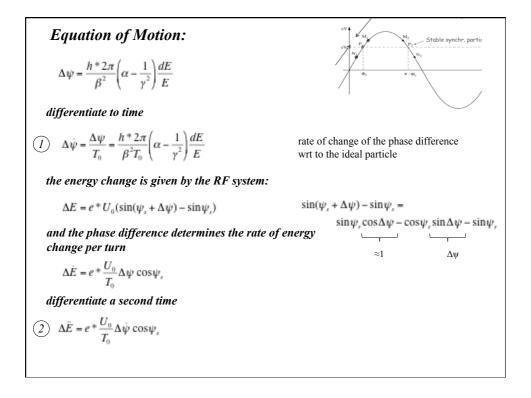
 $p - eB\rho \rightarrow \frac{dp}{dt} - e\rho \dot{B} \rightarrow (\Delta p)_{turn} - e\rho \dot{B}T_{r} - \frac{2\pi e\rho R\dot{B}}{v}$ Energy Gain per turn: $E^{2} = E_{0}^{2} + p^{2}c^{2} \Rightarrow \Delta E = v\Delta p$ $\Delta E_{turn} - \Delta W_{turn} - 2\pi e\rho R\dot{B} - e\hat{V}\sin\phi_{x}$

- * The energy gain depends on the rate of change of the dipole field
- * The number of stable synchronous particles is equal to the harmonic number h. They are equally spaced along the circumference.
- * Each synchronous particle satifies the relation $p = eB\rho$. They have the nominal energy and follow the nominal trajectory.

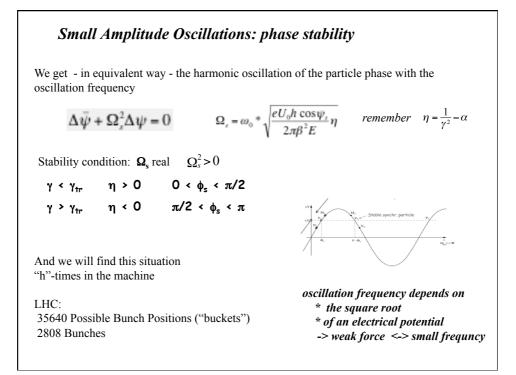


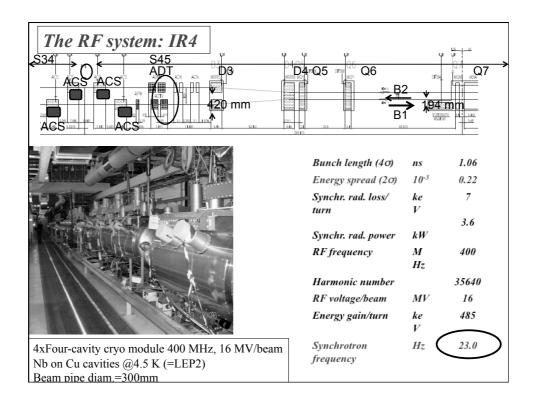


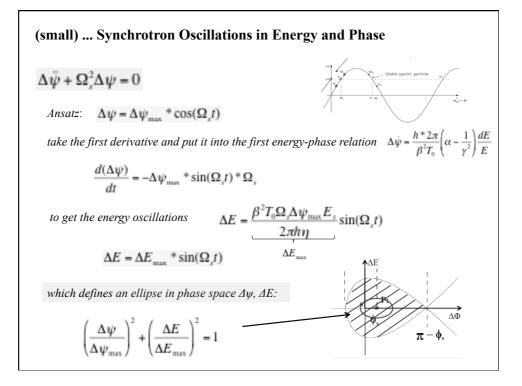


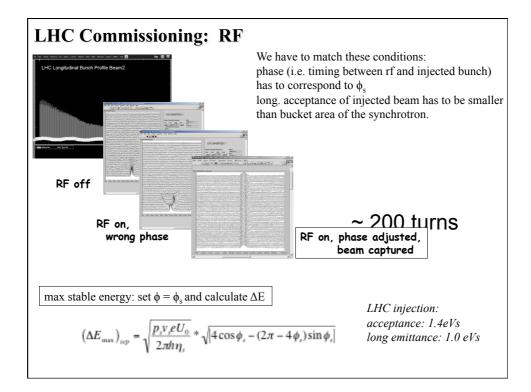


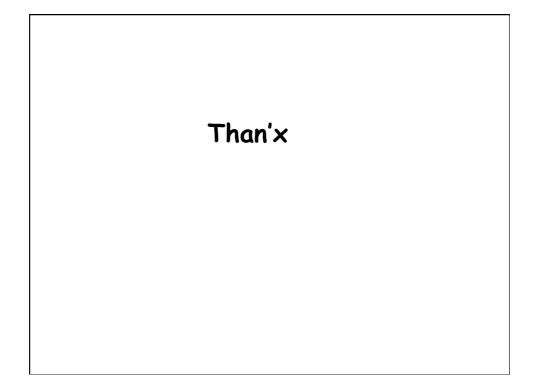
Equation of Motion: (1) $\Delta \psi = \frac{\Delta \psi}{T_0} = \frac{h * 2\pi}{\beta^2 T_0} \left(\alpha - \frac{1}{\gamma^2} \right) \frac{dE}{E}$ (2) $\Delta \vec{E} = e^* \frac{U_0}{T_0} \Delta \psi \cos \psi_s$ put (1) into (2) et c'est ca Equation of Motion in Phase Space E- ψ : $\Delta \vec{E} = e^* \frac{U_0}{T_0} \frac{2\pi h}{\alpha} \left(\alpha - \frac{1}{\gamma^2} \right) \frac{dE}{E} \cos \psi_s$ $\Delta \vec{E} + \Omega^2 \Delta E = 0$ We get a differential equation that describes the difference in energy of a particle to the ideal (i.e. synchronous) particle under the influence of the phases focusing effect of our sinusoidal RF function. And it is a harmonic oscillation !!! The oscillation frequency Ω is called synchrotron frequency and usually in the range of some Hz... kHz.











	court. Chris Prior, Trinity College / CAS					
	$\frac{\Delta\beta}{\beta}$	$\frac{\Delta p}{p}$	$\frac{\Delta T}{T}$	$\frac{\Delta E}{E} = \frac{\Delta \gamma}{\gamma}$		
$\frac{\Delta\beta}{\beta} =$	$\frac{\Delta\beta}{\beta}$	$\frac{\frac{1}{\gamma^2} \frac{\Delta p}{p}}{\frac{\Delta p}{p} - \frac{\Delta \gamma}{\gamma}}$	$\frac{1}{\gamma(\gamma+1)}\frac{\Delta T}{T}$	$\frac{\frac{1}{\beta^2 \gamma^2} \frac{\Delta \gamma}{\gamma}}{\frac{1}{\gamma^2 - 1} \frac{\Delta \gamma}{\gamma}}$		
$\frac{\Delta p}{p} =$	$\gamma^2 \frac{\Delta \beta}{\beta}$	$\frac{\Delta p}{p}$	$\frac{\gamma}{\gamma+1}\frac{\Delta T}{T}$	$\frac{1}{\beta^2} \frac{\Delta \gamma}{\gamma}$		
$\frac{p}{\frac{\Delta T}{T}} =$	$\gamma(\gamma+1)\frac{\Delta\beta}{\beta}$	$\left(1+\frac{1}{\gamma}\right)\frac{\Delta p}{p}$	$\frac{\Delta T}{T}$	$\frac{\gamma}{\gamma-1}\frac{\Delta\gamma}{\gamma}$		
$\frac{\frac{\Delta E}{E}}{\frac{\Delta \gamma}{\gamma}} =$	$\frac{(\beta\gamma)^2 \frac{\Delta\beta}{\beta}}{(\gamma^2 - 1) \frac{\Delta\beta}{\beta}}$	$\frac{\beta^2 \frac{\Delta p}{p}}{\frac{\Delta p}{p} - \frac{\Delta \beta}{\beta}}$	$\left(1-\frac{1}{\gamma}\right)\frac{\Delta T}{T}$	$\frac{\Delta\gamma}{\gamma}$		