

CERN	Outline	Le contrade da la
ŀ	Some definitions and degree of	Appendices
.	vacuum. Thermal transport at low pressure.	1. Basic elements.
.	Mass transport at low pressure:	2. Numerical values for slides 6 and 7.
	✤ Conductance	3. Numerical values of conductances.
	 Pumping speed. 	4. Pressure profiles.
.	 Electrical analogy. Gas sources: 	5. Outgassing values.
	 Outgassing. Inleakeage. 	 Complement of info about sputter ion pumps.
•	Pumping technologies:	7. A few notes about cryopumps.
ŀ	Pressure measurement in vacuum.]
CERN	Paolo Chiggiato CAS Supero Vacuum, Surfaces & Coatings Group Vacuum Technology Department	onductivity for Accelerators, Erice. May 3rd, 2013 niques for Superconducting Devices 2

Some Definitions and Degree of Vacuum

Vacuum for superconductivity in particle accelerators:

- 1. Thermal insulation for cryogenic systems.
- 2. Physical vapour deposition of superconducting thin films

	Pressure boundaries [mbar]	Pressure boundaries [Pa]
Low Vacuum LV	10 ³ -1	10 ⁵ -10 ²
Medium Vacuum MV	1-10 ⁻³	10 ² -10 ⁻¹
High Vacuum HV	10 ⁻³ -10 ⁻⁹	10 ⁻¹ -10 ⁻⁷
Ultra High vacuum UHV	10 ⁻⁹ -10 ⁻¹²	10 ⁻⁷ -10 ⁻¹⁰
Extreme Vacuum XHV	<10 ⁻¹²	<10 ⁻¹⁰

Vacuum Techniques for Superconducting Devices May

K_n rangeRegimeDescription $K_n > 0.5$ Free molecular flowThe gas dynamics are dominated by molecular collisions with the walls of the system $K_n < 0.01$ Continuous (viscous) flowThe gas dynamics are dominated by intermolecular collisions $0.5 < K_n < 0.01$ Transitional flowTransition between molecular and viscous flowBoth heat and mass transport are strongly dependent on the gas flow regime.	1	Some Definitions a	nd Degree of Vacuum
$K_n > 0.5$ Free molecular flowThe gas dynamics are dominated by molecular collisions with the walls of the system $K_n < 0.01$ Continuous (viscous) flowThe gas dynamics are dominated by intermolecular collisions $0.5 < K_n < 0.01$ Transitional flowTransition between molecular and viscous flowBoth heat and mass transport are strongly dependent on the gas flow regime.	K _n range	Regime	Description
Kn < 0.01 Continuous (viscous) flow The gas dynamics are dominated by intermolecular collisions 0.5 <kn 0.01<="" <="" td=""> Transitional flow Transition between molecular and viscous flow Both heat and mass transport are strongly dependent on the gas flow regime.</kn>	K _n >0.5	Free molecular flow	The gas dynamics are dominated by molecular collisions with the walls of the system
0.5 <k<sub>n<0.01</k<sub>	K _n <0.01	Continuous (viscous) flow	The gas dynamics are dominated by intermolecular collisions
Both heat and mass transport are strongly dependent on the gas flow regime.	0.5 <k<sub>n<0.01</k<sub>	Transitional flow	Transition between molecular and viscous flow
	Both heat an	d mass transport are stron	gly dependent on the gas flow regime.

Mass Tran	Mass Transport at Low Pressure: Pumping Speed					
As usual, in term of pressure and PV units:						
$Q_P = A_P C' \sigma P \to S = A_P C' \sigma$						
S depends on the conductance of the pump aperture $A_P C'$ and the capture probability σ . σ may depend on many parameters including pressure, kind of gas, and quantity of gas already pumped.						
The maximum pumping speed is obtained for $\sigma = 1$ and is equal to the conductance of the pump aperture.						
	ID [mm]	H ₂	N ₂	Ar		
vacuum	36	448	120	100		
vessel	307					
A _p pump	100	3456	924	773		
	150	7775	2079	1739		
Vacuum, Surfaces & Coatings Group CAS Superconductivity for Accelerators, Erice. Vacuum, Surfaces & Coatings Group May 3rd, 2013 Technology Department 12						

CERN			Electrical analo	ogy	
	Vacuum element	Electrical	al elements	•	The ground potential is
C	Conductance C	Conductance 1/R	• •		equivalent to zero pressure.
C	Gas Flow Q	Current I		•	Long tubes are divided into 'n'
F	Pressure P	Voltage V			the pressure profile along the
١	/olume V	Capacitance C	╍╌┨┠╌┤ ║		main axes. $C_n = C_{TOT} \times n$ and $V_n = V_{TOT}/n$.
F	² ump	Conductance to grou	IND	•	Non-linear electric characteristics can be used to simulate pressure and time
C	Gas source	Current generator	••		dependent conductance and pumping speed.
(s	Constant pressure source	Voltage supply)•	•	In this way pressure profiles and transients in viscous regime can be calculated.
ار م	/acuum chamber with conductance and volume				
CERN	Paolo Chiggiato Vacuum, Surfaces & Coatings Group Technology Department 16				

Material	q (mbar l s⁻¹ cm⁻²)	Main gas species
Neoprene, not baked, after 10 h of pumping	order of 10 ⁻⁵	H ₂ O
Viton, not baked, after 10 h of pumping	order of 10 ⁻⁷	H ₂ O
Austenitic stainless steel, not baked, after 10 h of pumping	3 × 10 ⁻¹⁰	H ₂ O
Austenitic stainless steel, baked at 150°C for 24 h	3 × 10 ^{−12}	H ₂
OFS copper, baked at 200°C for 24 h	order of 10 ⁻¹⁴	H ₂
	Material Neoprene, not baked, after 10 h of pumping Viton, not baked, after 10 h of pumping Austenitic stainless steel, not baked, after 10 h of pumping Austenitic stainless steel, baked at 150°C for 24 h OFS copper, baked at 200°C for 24 h	Material(mbar l s ⁻¹ cm ⁻²)Neoprene, not baked, after 10 h of pumpingorder of 10 ⁻⁵ Viton, not baked, after 10 h of pumpingorder of 10 ⁻⁷ Austenitic stainless steel, not baked, after 10 h of pumping 3×10^{-10} Austenitic stainless steel, baked at 150°C for 24 h 3×10^{-12} OFS copper, baked at 200°C for 24 horder of 10 ⁻¹⁴

Gas Pumping: Non-Evaporable Getter Pumps

The activation temperature of the **4**th **group elements** can be decreased by adding selected elements which increase oxygen diffusivity.

NEG materials are produced industrially by powder technology. Small fragments are sintered to form pellets, discs or plates. The powder can also be pressed at room temperature on metallic ribbon.

A typical alloy produced by SAES Getter is St707:

Element	Concentration [wt. %]	Main role in the alloy
Zr	70	High O solubility limit.Chemical reactivity
v	24.6	Increases O diffusivity,Chemical reactivity
Fe	5.4	- Reduces pyrophoricity

May 3rd, 2013

Full pumping speed is obtained after heating at 400°C for 45' or 300°C for 24h

<image><image><image><image><image><image><image><image><image><image><image>

Physical phenomena	Name of gauges	Pressure range of gauge family	Fields of application	Advantages/ Limitations
Force measurement due to ΔP	 Manometers. McLeod. Bourdon. Capacitance. 	10 ⁻² -10 ⁵ Pa	Metrology. Gas dosing. Gas line pressure.	Absolute gauges Easy to use
Viscous drag	Spinning rotor.	10 ⁻⁴ -10 ³ Pa	Metrology.	High precision Cost Gas dependence To be used by trained technician
Gas thermal conductivity	Pirani.Thermocouple.	10 ⁻¹ -10 ³	Rough measurement during pump-down.	Inexpensive Limited precision Fast response
Gas ionization	Bayard-AlpertCold-cathodeExtractor	10 ⁻³ -10 ⁻¹²	HV-UHV monitoring XHV measurement	Low pressure BA:X-ray limitation Sensitive to contamination

$P = n k_B T$	Gas De	ensity	
	Pressure (Pa)	293 K (molecules cm ⁻³)	4.3 K (molecules cm ⁻³)
Atmospheric pressure at sea level	$1.013 imes 10^5$	2.5×10^{19}	1.7×10^{21}
Typical plasma chambers	1	2.5×10^{14}	1.7 × 10 ¹⁶
LHC experimental beam pipes	10 ⁻⁹	2.5×10^{5}	$1.7 imes 10^7$
Lowest pressure ever measured at room temperature	10 ⁻¹²	250	$1.7 imes 10^4$
<u> </u>			

CERN	Appendix 1: Basic Elements, Impingement rate					
	$\varphi = \frac{1}{4}n\langle v \rangle = \frac{1}{2}$	$\frac{1}{4}n\sqrt{\frac{8\ k_BT}{\pi\ m}}$	φ[<i>cm</i>	$[s^{-2}s^{-1}] = 2.635\ 10$	$\frac{P \ [mbar]}{\sqrt{M[g]T[K]}}$	
		Gas	Pressure [mbar]	Impingement rate 293 K [cm ⁻² s ⁻¹]		
			10 ⁻³	1.1 10 ¹⁸		
		H_2	10 ⁻⁸	1.1 10 ¹³		
			10 ⁻¹⁴	1.1 10 ⁷		
		NI	10 ⁻³	2.9 10 ¹⁷		
		IN ₂	10 ⁻⁸	2.9 10 ¹²		
		۸	10 ⁻³	2.4 10 ¹⁷		
		Aſ	10 ⁻⁸	2.4 10 ¹²]	
CERN P. V. Ta	aolo Chiggiato acuum, Surfaces & Coatings Gro echnology Department	pup	CAS Superconduc Vacuum Techniques	tivity for Accelerators, Erice. s for Superconducting Devices	May 3rd, 2013 49	

Appendix 1: Basic Elements	, Mean Free Patl	n vộc
	miss	The GENN Assolet-due Sole
The molecular collision rate ω in a gas is:		hit hit
$\omega = \sqrt{2} n \langle v \rangle \sigma_c$	9	
where σ_c is the collision cross section. For a single gas, in case of elastic collision of soli	d spheres:	(lust)
$\sigma_c = \pi \delta^2 \rightarrow \omega = \sqrt{2} \pi n \langle v \rangle \delta^2$		
and δ is the molecular diameter.	Gas	$\sigma_c [nm^2]$
	H ₂	0.27
The mean free path l , i.e. the average distance	He	0.21
travelled by a molecule between collisions.	N ₂	0.43
$\langle v \rangle = 1 = k_B T$	O ₂	0.40
$\iota = \frac{1}{\omega} = \frac{1}{\sqrt{2} \pi n \delta^2} = \frac{1}{\sqrt{2} \pi P \delta^2}$	CO ₂	0.52
$l_{H_2}[m] = 4.3 \ 10^{-5} \frac{T[K]}{P[Pa]} \qquad l_{N_2}$	$[m] = 2.3 \ 10^{-5} \frac{T}{P}$	[K] [Pa]
Paolo Chigjiato Vacuum, Surfaces & Coatings Group Technology Department	ity for Accelerators, Erice. or Superconducting Devices	May 3rd, 2013 50

CERN	Appendix 6: H ₂ Pumping by Sputter Ion Pumps
~ 1	Hydrogen pumping by SIP
• • •	H_2 is mainly pumped by diffusion into the cathode. To be adsorbed, H_2 must be dissociated. Only 2.5% of the ions created in a low-pressure H_2 Penning discharge are H+ ions. The dissociation is possible only on atomically clean Ti. H_2 + ions have poor sputtering yield: 0.01 at 7 KeV on Ti.
•	When H_2 is the main gas, it takes a long time to clean the cathode surface by sputtering. As a consequence, at the beginning of the operation the pumping speed for H_2 is lower than the nominal and increases gradually with time. The simultaneous pumping of another gas has strong effects on H_2 pumping speed.
	 Higher sputtering yield→faster cleaning→ higher pumping speed Contaminating of the Ti surface→ lower pumping speed Desorption of implanted H ions→ lower pumping speed
•	When the concentration of H ₂ is higher than the solubility limit in Ti, hydride precipitates are formed \rightarrow Ti expansion and hydrogen embrittlement \rightarrow short circuits and cathode brittleness (for 500 l/s pumps: typical value are 10000 Torr l of H ₂)
CERN	Paolo Chiggiato CAS Superconductivity for Accelerators, Erice. May 3rd, 2013 Vacuum, Surfaces & Coatings Group Vacuum Techniques for Superconducting Devices May 3rd, 2013 Technology Department 68

CERN	Appendix 7: Cryopumps
Characteristics of Cryopumps	
1.	 Starting Pressure Cryopumps should be started when the mean free path of molecules is higher than the pump vessel diameter: P<10⁻³ mbar. Otherwise the thermal load is too high. In addition a thick condensate layer must be avoided. They need auxiliary pumps.
2.	 Pumping speed High effective pumping speed for all gases. Pumping speed from 800 l/s up to 60000 l/s are commercially available . Pumping speed for water vapour close to the theoretical maximum.
3.	Maximum Gas Intake (Capacity)
	 At the maximum gas intake, the initial pumping speed of the gas is reduced by a factor of 2. Condensed gases: the limitation is given by the thermal conductivity of the gas layer and the heat flux on the cold surface. Adsorbed gases: the capacity depends on the quantity and properties of the sorption agent; the capacity is pressure dependent and generally several orders of magnitude lower than that of condensable gases.
CERN	Paolo Chiggiato Vacuum, Surfaces & Coatings Group CAS Superconductivity for Accelerators, Erice. Vacuum Techniques for Superconducting Devices Technology Department 72

