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Some useful formulas:
magnetic moment of a current loop
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magnetization of a sample [A/m]
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alternative (preferred in [T]
SC community)

Measurable quantities:
magnetic field B [T] – Hall probe, NMR
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Outline:

1. Hard superconductor in varying magnetic field

2. Magnetization currents: Flux pinning
C liCoupling currents

3. Possibilities for reduction of magnetization currents

4. Methods to measure magnetization and AC loss

Superconductors used in magnets - what is essential?
pinning of magnetic flux

mechanism(s) hindering the change of magnetic field distribution
type II. superconductor with flux pinning = hard superconductor
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pinning of flux quanta
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gradient in the flux density 

distribution persists in static regime (DC field), but would
require a work to be changed

=> dissipation in dynamic regime
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(repulsive) interaction of flux quanta
=> flux line lattice

summation of microscopic pinning forces 
l i i f h fl li l i
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macroscopic behavior described by the 

+ elasticity of the flux line lattice
= macroscopic pinning force density Fp [N/m3]
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critical state model [Bean 1964]:
local density of electrical current in hard superconductor is
either 0 or the critical current density, jc

in the simplest version (first approximation) jc =const.
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Transport of electrical current

e.g. the critical current measurement
0 A 20 A 100 A

j =+ jc

I

80 A 20 A 0 A

j jc

j =0

j =- jc

persistent magnetization 
current

Transport of electrical current

AC cycle with Ia less than Ic : neutral zone

persistent 
magnetization

80     → 60     → -80     → -60     → 0  A

magnetization 
current
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∫ ∫ Φ−==
T

IdIUdtQ

AC transport in hard superconductor is not dissipation-less (AC loss)

neutral zone:
j =0, E = 0
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check for hysteresis in I vs. Φ plot

AC transport loss in hard superconductor
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Hard superconductor in changing magnetic field

0       → 30         → 50         → 40 mT

→ 0       → -50         → -40       → 0     → 50 mT

Hard superconductor in changing magnetic field

dissipation because of flux pinning Ba

y

volume loss density Q [J/m3]

magnetization:  

∫= MB
V
Q

ad

∫ −= yxyxjxM dd),(.

x

∫
S



Fedor Gömöry: Superconductor Dynamics

Round wire from hard superconductor in changing magnetic field
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Round wire from hard superconductor in changing magnetic field
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Slab in parallel magnetic field – analytical solution 

B penetration field
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Slab in parallel magnetic field – analytical solution 
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jc=10^8 A/m2, w=1 mm 
(Bp = 63 mT)

jc=10^8 A/m2, w=0.1 mm 
(Bp = 6.3 mT)
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effect of the field orientation
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in the case of flat wire or cable the orientation is not a free parameter

= reduction of the width 

e.g. striation of CC tapese.g. striation of CC tapes

B
B

~ 6 times lower magnetization

striation of CC tapes

but in operation the filaments are connected at magnet terminations

BB

coupling currents will appear
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Outline:

1. Hard superconductor in varying magnetic field

2. Magnetization currents: Flux pinning
C liCoupling currents

3. Possibilities for reduction of magnetization currents

4. Methods to measure magnetization and AC loss

Two parallel superconducting wires in metallic matrix

coupling currents

Ba

p g

in the case of a perfect coupling:

0       → 20           → 80           → 60 mT

in the case of a perfect coupling:
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Magnetization of two parallel wires

5.E+04

1.E+05

m
] uncoupled:

‐2.E+05

‐1.E+05

‐5.E+04

0.E+00

‐0.15 ‐0.1 ‐0.05 0 0.05 0.1 0.15

M
 [A

/

B [T]

coupled:
[ ]

we need to reduce the coupling currents !

Composite wires – twisted filaments 

&

lp

B&

j ⊥

B⊗

λ
λ
λρρ

+
+
−

=

1
1
1

mtgood interfaces

j ⊥

t

pBl
j

πρ2

&
=⊥

λ
λρρ

−
+

=
1
1

mtbad interfaces

m

SC

S
S

=λ



Fedor Gömöry: Superconductor Dynamics

Composite wires – twisted filaments 

coupling currents (partially) screen the applied field

BBBi
&τ−= τ - time constant of magnetic flux diffusion
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Persistent currents:

at large fields proportional to Bp ~ jc w
width of superconductor 
(perpendicular to the applied 
magnetic field)

= magnetization reduction by either lower jc or reduced w

lowering of jc would mean more superconducting material 
required to transport the same current

magnetic field)

thus only plausible way is the reduction of w 

Coupling currents:

at low frequencies proportional to the time constant of 
magnetic flux diffusion

transposition length2
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= filaments (in single tape) or strands (in a cable)
should be transposed

effective resistivity
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= low loss requires high inter-filament or inter-strand 
resistivity

but good stability needs the opposite
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Outline:

1. Hard superconductor in varying magnetic field
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C liCoupling currents

3. Possibilities for reduction of magnetization currents

4. Methods to measure magnetization and AC loss

Different methods necessary to investigate

• Wire (strand, tape)

• Cable

• Magnet

relevant information can 
be achieved in harmonic

shape of the excitation field (current) pulse
transition unipolar harmonic 

be achieved in harmonic 
regime

final testing necessary in 
actual regime
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ideal magnetization loss measurement:
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Method 1: double pick-up coil system with an electronic integrator :

measuring coil, compensating coil
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AC loss in one magnetization cycle [J/m3]:
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AC loss in one magnetization cycle [J/m3]:

Harmonic AC excitation – use of complex susceptibilities
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Method 2: Lock-in amplifier
– phase sensitive analysis of voltage signal spectrum
in-phase and out-of-phase signals
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Real magnetization loss measurement:

Pick-up coil

Calibration necessary

∫sample ∫= tuCM d
by means of:

measurement on a sample
with known properrties

calibration coil

numerical calculation

…

AC loss can be determined from the balance of energy flows

AC power 
supply

AC power flow
AC loss in 
SC object
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Solution 1- detection of power flow to the sample

AC power 
supply

AC power flow
AC loss in 
SC object

Solution 2- elimination of parasitic power flows

AC power 
supply

AC power flow
AC loss in 
SC object



Fedor Gömöry: Superconductor Dynamics

Loss measurement from the side of AC power supply:

LOCK-IN Rogowski
coil

LN2

AMPLIFIER

channel A

channel B

generator
transformer

Im sample

Bmsample UIP =
power supply

Loss measurement from the side of AC power supply:

Ψ(Ι) hysteresis loop registration for superconducting magnet (Wilson 1969)
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