

Superconductors for magnets I

René Flükiger

CERN TE-MSC

- **1. Introduction, Definitions**
- 2. Physical properties of superconducting Materials: NbTi and Nb₃Sn
- 3. The system NbTi, properties and fabrication
- 4. The system Nb₃Sn
 - A. Superconducting properties of the A15 phase
 - **B.** Wire fabrication and critical current densities
 - C. Calorimetric analysis of Nb₃Sn wires
 - Annex. Thermal Stability criteria

Technically interesting superconductors

1. Introduction, definitions

Compound	Year	T _c	B _{c2} (0)	ξ	
		(K)	(T)	(nm)	
NbTi	1960	9.6	14.5	~ 6	
Nb₃Sn	1953	18.3	24 - 28	~4	LTS
PbMo ₆ S ₈	1970	15	60	2.2	
Nb ₃ Ge	1972	23	38	~4	
Nb ₃ Al	1975	19	33	~4	
MgB ₂	2001	39	39 ^a bulk; 60 ^a films	5	
Bi ₂ Sr ₂ Ca ₁ Cu ₂ O ₈	1989	94	> 100ª	1 - 2	HIS
Bi ₂ Sr ₂ Ca ₂ Cu ₃ O ₁₀	1989	110	> 100ª	1 - 2	
YBa ₂ Cu ₃ O ₇	1988	92	> 100ª	1 - 2	
(Ba _{0.6} K _{0.4})Fe ₂ As ₂	2007	CAS, EMBe, Italy, 2	70 - 135 a	2 - 3	

Round wires

NbTi	Still the most used wires: ~ 90% (MRI, accelerators)
Nb ₃ Sn	> 5% (NMR, lab magnets, accelerators as LHC Upgrade)
MgB ₂	Low costs; Niche applications at 10 – 25 K (open MRI, LINK)
Bi-2212	Future accelerators at >20T. Problem: mechanical stability

Tapes

Bi,Pb(2223)Cables, motors at T< 30K. Problems: costs, < 1 T at 77K)</th>YBCOCables, Current limiters, Wind generators,.....(Main problems: costs, limited lengths)Commercially available: < 500 m SuperPower, USA</th>< 500 m at Fujikura, Japan</th>

Other high field superconductors

- Ba_{0.6}K_{0.4})Fe₂As₂ Pnictides: promising for high field magnets (B_{c2} > 70T), but not yet at the industrial level. Problems: toxicity of As, complex metallurgy.
- PbMo₆S₈ Chevrel phases. B_{c2}>50T! Problems: Reaction at > 1000°C, very difficult deformation, no prestress.

Cooling Regime for various Superconducting wires

The CERN Accelerator School

Applied Superconductivity: Definitions

Definitions

Supercond. transition temperature:	T _c [K]	
Critical current:	I _c [A]	
Critical current density:	j _c [A/cm ²]; j _c [A/mm ²	
Critical magnetic field:	B _{c2} [T]	
Exponential <i>n</i> factor:	n: U~I ⁿ	

Critical surface in type II superconductors

Transport Measurement of J_c

Measurement of Industrial Nb₃Sn wires

Resistive superconducting transition at various magnetic fields

Variation of critical current vs. applied magnetic field B

2. Physical properties of superconducting materials: NbTi and Nb₃Sn

The exponential *n* factor

The *n* factor is an empirical quantity describing the quality of the wire: * surface state of the filaments * homogeneity along the wire axis («sausaging») **/ ~ /**n at a given operational B and T **Definition:** V Low n value High n value 1 µV/cm lc1 c2

In general, a high n value corresponds to a wire of higher quality Required: n > 30 at operational B and T. Highest n values for NMR magnets

The upper critical magnetic field B_{c2}

Upper critical fields of metallic (LIS) superconductors

The CERN Accelerator School

 $B_{c2}(0)$ is determined by measuring $B_{c2}(T)$ either resistively or inductively.

In the case of wires, where I_c is known, one uses the Kramer extrapolation: the function $B^{\frac{1}{2}} I_c^{\frac{1}{2}}$ (T) vs. B is extrapolated to B = 0 $\implies B_{c2}^{*}|_T$

For magnets, one defines usually:

NbTi : B_{c2}*(1.9 K), Nb₃Sn: B_{c2}*(4.2K).

These extrapolated values may differ from $B_{c2}(4.2K)$ or $B_{c2}(1.9K)$ determined by a direct measurement.

Kramer extrapolation for Bronze Route wires

CERN

The Kramer extrapolation

CAS, Erice, Italy, 25 April - 4 May, 2013

Flux pinning in superconducting wires

How to imagine a vortex?

Possible pinning mechanisms

J_c in a wire is zero, unless vortices can be «pinned» !

Microscopic defects provide pinning sites:

- Precipitates
- Dislocations
- Twin boundaries, stacking faults
- Irradiation tracks
- Grain boundaries

Grain boundaries: main contribution to pinning in LTS

Correlation between grain size and J in LTS

The CERN Accelerator School

Nb₃Sn: effects of grain size and pinning force

Nb₃Sn bronze route wire

Increase of grain size with reaction temperature

The Pinning Force

The motion of a flux line submitted to a magnetic field can be stopped by introducing pinning centers, thus leading to an energy reduction.

Maximum pinning force per flux tube : $f_p = -(j_c \times \overline{\Phi_o})$

Maximum pinning force per volume :

$$F_p = n f_p = -(j_c \times B)$$

In a type II superconductor in the mixed state, j_c is limited by the motion of flux lines.

Lorentz force on each flux line : $F_L = j \times \overline{\Phi_o}$

Flux motion leads to energy dissipation, thus to local heating.

Energy dissipation :

$$P = j E = j (v \times B)$$

There is energy dissipation when $F_P > F$ is larger than the pinning force.

, i.e. when the Lorentz force

Variation of the Lorentz force F_p with reduced field

Local and/or temporary perturbations may lead to thermal instability and to a quench.

Consider a wire with T_c submitted to I in bath T_b . Stable operation conditions: $T_c > T_b$

Cinternation Stability and applicability of

- 1: Chemical stability
- 2 : Mechanical stability :
 - Bulk superconductors (except NbTi) break at ε <0.05 %!
 - \rightarrow microcomposite (multifilamentary) configuration
 - Filament size: $< 5 30 \mu m$
 - <u>*Wires:*</u> Irreversible strain: $\epsilon_{irr} > 0.4$ %
- 3 : Cryogenic stability : presence of Cu as stabilizer
 - High thermal conductivity of Cu
 - \rightarrow a minimum quantity of stabilizer is required (> 23% Cu)
- 4 : Electromagnetic stability :
 - Low AC coupling losses required \rightarrow Twisting of wires
- 5 : Low material costs
- 6: Length: > 1 km

Applied superconductivity: Phenomenon at nanometric scale

Intergrain boundary at the high Sn limit of Bronze Route Wires

LTS:

Defects at grain boundaries: breakage of periodicity creates normalconducting regions: Vortices, will pin the flux lines

Grain boundaries are the main factor for the enhancement of Jc in superconducting wires Boundary between Nb₃Sn grains

R. Flükiger and M. Cantoni, 2005

4 nm: ~ Coherence length ξ_o

3. The system NbTi

The system NbTi: crystal structure and phase diagram

0

NbTi: $T_c = 10 \text{ K}, B_{c2} = 14 \text{ T}$

Nb-Ti phase diagram. The low temperature boundaries are based on calculations by Kaufman et al. The dashed line represents the martensitic transformation inferred by Moffatt and Larbalestier.

The CERN Accelerator School

The fabrication of NbTi wires

CAS, Erice, Italy, 25 April - 4 May, 2013

TEM image of NbTi filaments

α – Ti ribbons: form spontaneously during wire deformation

TEM image of the microstructure (transverse cross-section) of a 3700 A/mm² (5 T, 4.2 K) multifilamentary strand from Oxford Instruments (OST).

This image shows the dense array of folded α-Ti ribbons (lighter contrast) that create the strong vortex pinning.

D. Larbalestier and P. Lee, 1995

Courtesy Oxford Instruments

Artificial pinning: Introducing defects having sizes comparable or smaller than ξ_o

Today, NbTi is used* for NMR up to 9T,* for a background field in high field magnetsand* for accelerator magnets (LHC)

No further work is performed for a further enhancement of J_c in industrial NbTi wires. Artificial pinning in Nb₃Sn was so far unsuccessful.

4. The system Nb₃Sn

4 A. Superconducting properties of the A15 phase

The cubic A15 type structure A₃B

The system Nb₃Sn

Very brittle phase ;
$$T_c = 18$$
 K, $B_{c2} = 22T$ (clean limit : $l >> \xi_0$)
 $B_{c2} = 30$ T (dirty limit : $l \approx \xi_0$)

Perfectly ordered phase : all cubic sites occupied by Sn all chain sites occupied by Nb

 \rightarrow very low normal state electrical resistivity $\rho(T>T_c)$, or ρ_o

The Nb-Sn phase diagram

Variation of T_c with Sn content in Nb₃Sn

 $T_c = T_{c \max} = 18.3$ K at the stoichiometric composition (25 at.%Sn):

Variation of ρ_0 vs. Sn content in Nb₃Sn

The CERN Accelerator School

Variation of B_{c2} vs. Sn content in Nb₃Sn

Clean and dirty limit in Nb₃Sn

Effect of Ti and Ta additives

Ta: Cody et al. (1972)
Ti: Sekine et al. (1980)
Drost et al. (1985),
Suenaga et al., (1986),
Geneva group (2007)

The variation of T_c for the Ta and Ti content giving the highest values of J_c is very small

4B. Nb₃Sn wire fabrication and critical current densities

Industrial fabrication techniques

Bronze Route Internal Sn Diffusion Powder in Tube (or PIT) method

The bronze diffusion reaction to Nb₃Sn

echniques for the Nb₂Sn wire fabrication

Several different industrial modes of processing Nb₃Sn wires.

1: High Sn contents (>18 wt.% Sn)

Internal Sn, Filaments:IGC (USA), Alsthom (F), Eurometalli (I)Internal Sn, Jelly Roll:Oxford (USA)Nb tube process:Showa, Toshiba (J)ECN route : powder processSMI (Ne)

High Sn content leads to higher values of j_c (distribution in the filaments)

<u>2: Low Sn contents (≤ 15.4 wt.%Sn)</u>

Bronze route:

VAC (D), Kobe Steel (J), Hitachi (J), Furukawa (J)

The bronze route is the only one being appropriate to <u>persistent mode operation</u> of a solenoid, since the Ta barrier can be set at the tenter of the wire : the contacts between filaments of two joints occurs directly from superconductor to superconductor (the Ta barrier does not need to be etched away).

Internal Sn Diffusion method: No intermediate anneals

Bronze route

Minus

- Intermediate anneals each 50 % of cross section reduction
- Lower j_c values than Internal Sn wires at intermediate and

low fields

Plus

- Very long lengths (> 5'000 m)
- Low effective filament diameter (< 20 μ m)
- High longitudinal homogeneity
- Appreciably high j_c values at high fields
- Suitable for persistent mode applications (central Ta barrier around Cu stabilizer)
- * Has the best mechanical properties of all Nb₃Sn wire types

Internal Sn route

Minus

- Effective diameter higher than for bronze route
- Longitudinal homogeneity lower than for bronze route
- Less uitable for persistent mode operation (external Ta barrier)

Plus

- No intermediate anneals (lower costs than bronze route wires)
- High j_c values at intermediate fields : > 3'500 A/mm² at 4.2K/12T
- Appreciably long lengths (> 1'000 m)

Bronze type Nb₃Sn wire (10'000 filaments)

Nb₃Sn wire configuration by Internal Sn diffusion

2 RRP wires with J_c (non-Cu) = 2'000 A/mm² at 4.2K/12T

Thin Nb barrier

a: thin Nb barrier, almost fully reacted: RRR = 10 b: thick Nb barrier, a complete unreacted Nb barrier remains: RRR = 100.

NbTi addition in Internal Sn wires (OST)

Ti additives introduced by NbTi rods.

Optimized Nb₃Sn reaction

Required for LHC Upgrade: J_c(non-Cu) = 1'500 A/mm² at 4.2K/15T

1mm Ti doped 169 stack strand ($D_s \sim 52 \mu m$) Study of heat treatment temperature 665°C and 650°C

- trade small decrease of 15 T J_c to improve RRR > 200

RRP wires for various applications

Distributed Barrier Internal Sn – RRP®

- · Conductor development focused on the needs of the application
 - NMR highest J_c at high field, D_{eff} generally not a concern
 - HEP high J_c at mid field, but with small D_{eff}
 - CICC mid J_c at mid field, with high RRR after Cr plating
 - Lab magnets a large I_c range (wire diameter selection), strength

Courtesy Parrell (OST)

Powder in Tube (or PIT) technique

PIT technique

Minus

- Mechanical properties
- Large effective filament diameter
- * Higher costs than other techniques **Plus**
- Very high Sn content \rightarrow constant Sn level in the filaments
- Very high cirtical current densities > 3'000 A/mm² at 4.2K/12T

As starting material, one uses NbSn₂ powders, which are difficult to fabricate high costs

PIT: Powder in tube Nb₃Sn wires

« hole »: low density Nb, residual **Cu matrix** Nb₃Sn

4C. Calorimetric analysis of Nb₃Sn wires

Specific heat measurements:

No shielding effects

Measures the totality of the superconducting volume in the wire

Measurement with the matrix (under prestress)

Up to high fields (21 T)

Technique

Measurement at 0T and 14T

Subtraction, to eliminate normal conducting part

Deconvolution of the superconducting part \square T_c distribution

Result: All Nb₃Sn wires are inherently inhomogeneous! Susceptibility or

resistivity measurements give only the onset value of T_c!

Clear difference between Bronze route and Internal Sn (RRP) wires: Bronze Route wires have a lower T_c \longrightarrow lower average Sn content

C. Senatore, V. Abächerli, R.Flükiger, 2011 CAS, Erice, Italy, 25 April - 4 May, 2013

Conclusion, Nb₃Sn properties, I

Conclusions about Nb₃Sn wires (part I)

- For LHC Upgrade, the Nb₃Sn wires prepared by RRP and PIT processing are found to exhibit sufficiently high critical current densities
- Bronze Route wires have to be excluded, J_c being too low
- The cost situation is at present more favourable for RRP wires, but wires of both processes are still under study.
- Due to the high activation of Ta due to high energy neutron irradiation, Nb₃Sn wires alloyed with Ta should be avoided.
- Mechanical properties: see conclusions II

Annex. Remarks about thermal stability of superconducting wires

Why multifilamentary superconducting wires?

Suppose a local perturbation causing : $T = T_p > T_c$

* a resistive zone develops in the wire
 * Joule heat is built up locally.

Energy to be evacuated to restore the superconducting state comprises: *the energy leading to the perturbation, and *the energy produced by the Joule heat.

Three different power terms have to considered:

1: The Joule heat

$$P_{joule} = R_n l^2 = \rho_n a j^2 \pi R^2$$

where j = I / πR^2 , and r_n = normal resistivity.

2. Heat conduction through the wire

Heat from the resistive zone to the neighbouring superconducting region:

Pconduction	$2\pi R^2 \lambda dT/dx = 2\pi R^2 \lambda dT'$,		
	where λ = thermal conductivity		
	T' = temp. gradient in perturbed zone		
	$= dT/dx = 2 (T_p - T_c)/a$		

3. Heat transfer to the bath, in a slice of thickness x

dP _{bath}		$2\pi R h [T(x) - T_b] dx$, and
Pbath	=	$2\pi \mathbf{R} \mathbf{a} \mathbf{h} [(\mathbf{T}_{c} - \mathbf{T}_{b}) + \mathbf{a} \mathbf{T}'],$
		where h = heat transfer coefficient (to the bath)

The thermal stability limit is now given by :

$$P_{joule} < P_{conduction} + P_{bath}$$

 $\Rightarrow \rho_n l^2 < 2\lambda dT' \frac{1}{a} + hT'/2R a + 2h/R(T_c - T_b) \equiv f(a)$

Regions of instability in a wire

In order to satisfy the stability critierion, following parameters have to be optimized, leading to the actual multifilamentary wire configuration :

- a : <u>Temperature</u> : The difference (T_c-T_b) must be as large as possible \rightarrow High T_c is important
- b: <u>Wire radius R</u>: R should be as small as possible
 - → small filament diameters, multifilamentary configuration in industrial wires
- c: <u>Heat conductivity λ </u>: λ must be as high as possible
 - → each filament in an industrial wire is surrounded by with a highly conducting Cu matrix
- d: <u>Heat transfer h</u>: h must be minimized

 \rightarrow The Cu matrix is also effective in providing a better heat transfer to the bath.