

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Development of 6-bit Successive Approximation ADC for LHCb tracker upgrade

Jakub Moroń

Faculty of Physics and Applied Computer Science AGH University of Science and Technology

5 July 2012, Kraków

Agenda

- Previous experience with pipeline ADC
- Successive approximation ADC
- 10-bit ADC prototypes in 130nm IBM
- 6-bit ADC design in 130nm IBM
- Simulation results for 6-bit ADC
- 8-channels 6-bit ADC prototype core

10-bit Pipeline ADC in 0.35um AMS

- Fully differential design
- Maximum sapling rate 25MS/s
- Power pulsing

- 10-bit pipeline ADC with 1.5 bit per stage architecture
- S/H stage + 9 pipeline stages

M. Idzik, K. Swientek, T. Fiutowski, Sz. Kulis, P. Ambalathankandy "A power scalable 10-bit pipeline ADC for Luminosity Detector at ILC", JINST 6 P01004, 2011

10-bit Pipeline ADC in 0.35um AMS

- Designed and fabricated in 0.35um AMS
- Single channel area 0.87 mm²
- 8-channel ASIC **2.6mm x 3.2mm**
- Sampling rate 1kS/s-25MS/s
- Scalable power ~0.8mW/MS/s
- Sinad ≈ 60dB
- ENOB = 9.7 bit
- INL < 0.42 LSB
- DNL < 0.42 LSB

SAR (successive approximation register) architecture

- Power and area-efficient architecture the same circuitry is used n-times (for n-bit ADC) to approximate the input voltage
- Asynchronous logic no fast clock needed for bit cycling, only sampling signal needed
- Only one comparator per channel small layout area
- Split DAC architecture lower area and power consumption
- Not for ultra-high sampling rate next conversion cannot be started before the current one is completed

10-bit SAR ADC in 130nm IBM

Two ADCs designed in 130nm IBM

- Both: channel area $\approx 0.09 \text{ mm}^2 (146 \text{um x } 600 \text{um})$
- First prototype submitted in February 2012
- Simulated ENOB ≈ 9.5 bits
- Maximum sampling rate above **50 MS/s**
- Power consumption ≈
 1.4mW @ 40 MS/s
- Simulated FOM ≈ 50
 fJ/conv.bit

- Second prototype submitted in May 2012
- Simulated ENOB improved to 9.8 bits
- Maximum sampling rate above **50 MS/s**
- Power consumption ≈1.1mW @ 40 MS/s
- Simulated FOM ≈ 35
 fJ/conv.bit

First prototypes from February submission already arrived. Tests will start soon...

6-bit SAR ADC in 130nm IBM

Based on experience with 10-bit ADC design a 6-bit SAR ADC was developed for LHCb upgrade in 130nm IBM technology

- Design guidelines
 - Channel pitch = 40um
 - 6 bit resolution with simulated ENOB > 5.8 bits
 - Maximum sampling rate > 50 MS/s, nominal sampling rate = 40 MS/s
 - Power pulsing
 - Power consumption < 0.5 mW per channel @40 MS/s

6-bit ADC simulation results

Dynamic parameters obtained from discrete Fourier analyses of n (i.e. 1024) samples of input sine wave.

Post-layout simulation results:

- SINAD ≈ **37.5 dB**
- ENOB ≈ 5.94 bits
- Maximum sapling rate~100MS/s

6-bit ADC simulations results

Dynamic simulations performed 100 times for component parameters mismatch obtained from Monte Carlo distribution

Excellent results: ENOB not less than 5.8 bits, average 5.95 bits

6-bit ADC power consumption

- Power consumption at 40MS/s sampling rate <300uW
- Simulated FOM (Figure of merit) ≈ 120 fJ/conv.bit
- Design optimized for high resolution and sampling rate, not for lowest power consumption
- About 75% of power needed by digital circuit due to high maximum sampling rate (~100MS/s)
- Asynchronous logic together with dynamic architecture of comparator results in ~0 static power - power pulsing is given for free
- Power consumption linearly scales with sampling frequency

6-bit ADC channel layout

- Designed and fabricated in 0.13um IBM technology
- Single channel: 40um x 400um (area 0.016 mm²)
- Custom capacitor p-cell layout needed to obtain 40um pitch
- Test ASIC containing 8 channel submitted for fabrication on 5th May 2012

6-bit SAR ADC sampling pulse generator

Generator of sampling pulse converts 50% duty external sampling clock into internal variable width pulse (controlled by Ibias)

Simulation results:

- Pulse width in range 2-8ns
- Bias current in range 5-40uA

8-channel 6-bit SAR ADC prototype core

8-channel 6-bit SAR ADC prototype core was designed

- 4 channels with nominal40um pitch
- 4 channels with pitch increased to 80um to check the effect of layout variation on ADC performance
- Sampling pulse generator driven by external clock
- Sampling pulse distribution tree

We hope to see the results soon...