

Overview of LHCb Upgrade Electronics Thanks for the invitation to Krakow!

Electronics architecture

Front-end electronics: transmit data from every 25ns BX

Typical Implementation

Zoom on Implementation

LHC

Reminder of FE specifications

LHCb note http://cdsweb.cern.ch/record/1340939/files/LHCb-PUB-2011-011.pdf TFC note http://cdsweb.cern.ch/record/1424363/files/LHCb-PUB-2012-001.pdf

Both notes list requirements that must be satisfied by front-end chips!

- Examples:
- Bunch counter
- Resets
- Non-zero suppressed mode
- Etc etc etc

Interfaces on FE ASIC

GBT Eports for data:

Phased clocks (8):

SLVS @ 80, 160, or 320 Mb/s Each has input, output, clock SLVS, each can be 40, 80, 160 or 320 MHz

GBT-SCA Single-ended CMOS (1.2-2.5V compatible) 12C is the favourite protocol

Timing/Fast Control (from GBTX) SLVS bus of maximum 24 bits

Power Rad-tol DC-DC convertors are best option Are linear regulators needed in ASIC?

- 1. Conceptual Design Review (part of system review) Chip architecture, functions, compatible with system, happy clients
- 2. Design Review
- 3. Production Readiness Review

WHEN ??????

General comments

Try to share (eg ATLAS): voltage regulator? bandgap

Borrow blocks:

Eport from GBT i2c slave PLL

Simulations of detector occupancy

- Good Monte Carlo at L = 2×10^{33}
- Where are bottle-necks in design?
- What safety margin?

Testability + features for detector commissioning

Hybrid design? Should run in parallel with ASIC design

Ken Wyllie, CERN

Next meeting

26th July, general electronics meeting followed by session dedicated to Tracker Electronics issues

http://lhcb-elec.web.cern.ch/lhcb-elec/html/upgrade.htm

Mailing list: Go to simba.cern.ch, search for lhcb-upgrade-electronics