Electronics for SciFi tracker for LHCb upgrade

Hervé Chanal¹, Eric Cogneras¹, Pascal Perret¹ Albert Comerma², David Gascón²

¹ Clermont Université, Université Blaise Pascal,CNRS/IN2P3, Laboratoire de Physique Corpusculaire, Pôle Micrhau, BP 10448, F-63000 CLERMONTFERRAND, France ² Universitat de Barcelona, Facultat de Física, dept. E.C.M.,Institut de Ciències del Cosmos, Lab. 726, Martí Franquès 1, 08028 Barcelona, Spain

Krakow, Poland, 05th July 2012

The central tracker option

- Upgrade of the T station;
- Central tracker: scintillating fibres;
- Outer tracker: drift tube;
- ► 3 × 4 detector frame;
- Installation in 2018.

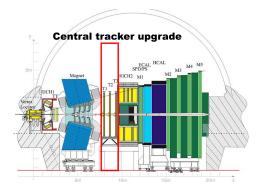


Figure: LHCb upgrade: the T stations

Foreseen electronic from the detector to the PC farm

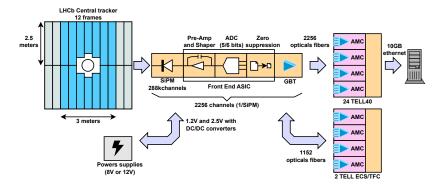
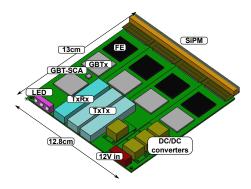
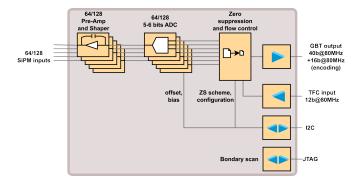



Figure: Foreseen readout scheme with 1 GBT/SiPM and 1 GBT ECS / 4 SiPM


The central tracker option

- 2.5 meters scintillating fibres;
- 250µm fibres;
- ► 4 × 3 layers.

The FE electronic board

- Use 8V or 12V from remote power supplies converted to 2.5V and 1.2V using DC/DC converters (reuse marathon power supplies);
- Handle at least 4 SiPM;
- FE ASIC: BGA package (flip chip);
- 1 GBT ECS/4 SiPM ?
- Standalone module (easier to test).

The low-Power ASIC for the sCIntillating Flbres traCker (PACIFIC) is a collaboration between the Universitat de Barcelona and the Laboratoire de Physique Corpusculaire de Clermont-Ferrand. Synergies with the ASIC for the TT and VELO strip option are investigated.

- Low power (8mW/channel);
- With built-in test features.

Pole Micrhau Expertise

The pole Michrau is:

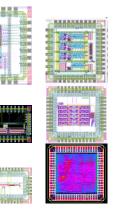
- Union of the micro-electronic groups from Clermont-Ferrand and Lyon;
- 12 engineers.

Significant background in ADC development:

- Flash 6 bits 20MS/s;
- Flash 8 bits 50MS/s;
- Pipeline 8 bits 100MS/s;
- Cyclic 12 bits 1MS/s;
- Wilkison 12 bits 0.0125MS/s.

Under study:

- Flash 6 bits 2GS/s (Medical application);
- Pipeline 12 bits 40MS/s (sAtlas TileCal).


Front-End design:

- LHCb preshower Front-End;
- T2K Front end;
- ILC Calice Front-End.

Pure digital:

 A front end chip for the SCMS silicon tracker.

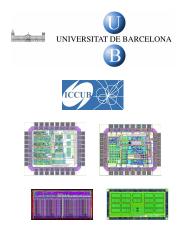
ICCUB Expertise

ICCUB is:

- Electronics design section of High Energy Physics group;
- 4 engineers.

Significant background in mixed mode frontend design:

- LHCb's SPD PMT readout ASIC;
- LHCb ECAL-HCAL Upgrade ASIC (ICECAL)*;
- Cherenkov Telescope Array PMT readout ASICs*: ACTA, PACTA NECTAR0 (collaboration with CEA/Saclay);


Under study / prototyping:

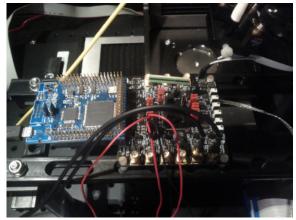
 Frontend ASIC for SiPM readout for PET (AMS 0.35µm SiGe);

Mixed designs:

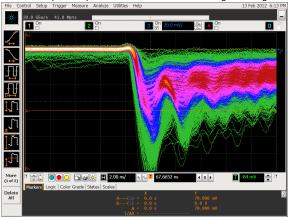
- SILC collaboration ASIC (UMC 130nm).
- DEPFET collaboration ASIC (IBM 90nm).

Collaboration with UB Electronics Department.

*Some prototypes tested, still under developement.


Some simulations and tests with commercial devices suggest an optimal ASIC design with the following characteristics:

- Input stage:
 - Common-Catode arrays, current must "enter" into the preamplifier;
 - Sensor capacitance may vary, now around 35 pF;
 - Low input impedance (around 20Ω);
 - Dynamic range should be around 88cells (5µA 1.3 mA);
 - V_{ANODE} must be configurable by channel in a range of ≈1V;
 - High speed (around 250MHz) preamplifier.
- Signal processing:
 - Shaping time should be around 25ns, double pulse resolution of 25ns.
- TDC or ADC:
 - 40MSps, 4,5 or 6 bits, low power. One per channel? Multiplexed?
- Digital processing:
 - Zero supression;
 - Clusterization;
 - Compression;
 - GBT interface.


Analog front-End: Test

A first analog front end has been developed in $0.35 \mu m$ with BiCMOS:

- the 0.13µm version design is ongoing;
- allows to test SiPM Array: red laser pointing on first channels of device connected to ASIC test board.

Analog front-End: Result

As an example: Output with 10 SiPM cells fired using the low gain

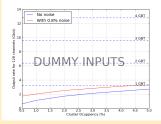
Clusterization

Needs

A GBT can not send all the data processed from a SiPM (31Gb/s)

Solution

The cluster barycentre is computed in the chip. Principle:


- The ADC values are not sent;
- An extended address (7b+3b) with an 1/8 fibre resolution is sent;
- the ADC sum/cluster size is sent for sanity checks;
- 16 bits/cluster.

Frame:

Results

A systemC model has been developed to check this processing.

 The feasibility has to be tested using full physics simulations.

Part	Common development possible ?
Pre-amp	X
Shaper	X
ADC	1
I2C	\checkmark
JTAG	1
ZS	🗡 (maybe 🗸)
TFC	1
Software libraries development	1
Test bench	1

2018	Installation
2017	ASIC test
	Board test and production
2016	ASIC production
2015	Test of the 128/64 channels prototype
2014	Development of the 28/64 channels prototype
	Tests of the 1 channel prototype
2013	Tests of building blocks
	Development of the 1 channel prototype
2012	Development of building blocks
	Hardware model simulation
	Digital part design

 μ -Electronics human resource:

- Now: Albert, David and Hervé;
- Is expected to increase.

The Zürich University is interested in participating in the detector electronics.