

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Digital design issues

Krzysztof Swientek

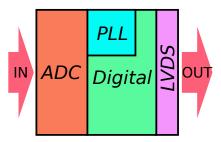
Swientek@agh.edu.pl

Department of Physics and Applied Computer Science AGH

LHCb Upgrade Meeting, July 2012, Krakow

Krzysztof Swientek (AGH)

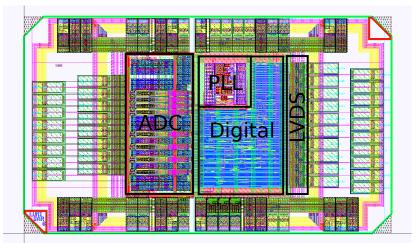
।□▶◀॑॑॑॑॑/▶◀ॾॆ▶◀ॾ► ॾ ∽०००


First prototype of 6-bit digitiser

General design issues Digital processing Verification Single Event Effects Testing

Multichannel ADC for LHCb

- ADC
 - 6 bit SAR ADCs
 - 8 channels
 - differential input
 - staggered input pads in 80 um pitch per channel



- Digital multiplexer and serializer
 - two modes of serialisation
 - partial each channel separately
 - full whole chip
 - clock delivery
 - sample clock and multiplication (PLL)
 - readout clock and division
 - LVDS outputs
 - staggered output pads
 - SPI like slow control

In production, not tested yet

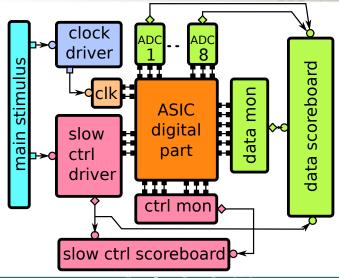
н LUMI_SAR_6 ASIC

• Pad driven layout (65%)

• Size 2300x1400 um

- Present ASIC
 - no real digital processing implemented
 - · serialisation and some test functions
- Future plans
 - studies on zero-suppression and other data compression started (master thesis)
 - other algorithms to be delivered (T. Szumlak)

Verification


- Verification ensure the design meets its specification
- ASIC functionality is described on high level of abstraction and check against the RTL description (signalling level described in Verilog HDL) and gate implementation
- Additional code needed to check design, additional work
- Hardware Verification Language (HVL): SystemVerilog
 - superset of Verilog HDL
 - object oriented, real programing language
 - advanced issues: assertions, coverage
- Base components are common to different verification processes: driver, monitor, scoreboard, stimulus
- The more structure in a verification the less error probability
- Verification Library: Universal Verification Methodology (UVM)

- Even without digital processing present ASIC has quite complex functionality
 - four mode of operation (two normal, two test)
 - three types of serialisation (including test mode)
 - up to three clock domains
 - PLL and clock dividers inside
 - · pseudorandom test counters at data input
 - slow control
- Automatic verification (called self-checking) is needed
- The best choice but difficult random-based verification
- Addition of functionality (e.g. data processing) will complicate the ASIC even more

Example verification diagram (UVM based)

бн Single Event Effects

- Ionising particle generates charge in silicon structures; good in sensors, bad in electronics
- Most interactions are nondestructive but generate electrical impulses which may lead to malfunction of electronics circuit
- Soft Errors types
 - sequential: bit flip in RAM of D flip-flop
 - combinatorial: electrical pulse latched by D flip-flop
- Soft Error Rate (SER) is proportional to
 - size of a circuit (sequential & combinatorial)
 - clock frequency (combinatorial)
- The more complicated digital processing the higher digital noise from SEE

Gн SER approximation & control

- According to literature in 130 nm technology one can expect that *sequential* SEE will dominate in SER (moderate frequency)
- SER calculation
 - · no common agreement how to approximate/calculate SER
 - difficult but possible more studies necessary
 - particle energy spectrum and angle dependency is necessary
- SER control
 - allowed SER level should be specified additional digital noise in data
 - ASIC critical parts (e.g. control registers) have to be identified and protected

- · Testing check if chip was manufactured correctly
- Each gate, each transistor in a gate and each connection should be checked
- Very important for mass production
- Additional test circuitry in ASIC necessary e.g.:
 - scan-chain (base technique)
 - JTAG with boundary scan
 - memory BIST
- Test vectors necessary (no experience) Automatic Test Pattern Generation (ATPG)