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Examples of Rapidity Gaps
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Large Rapidity Gaps
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Soft rescattering between ”partons” produce secondaries which may fill the
rapidity gap (a), and (b) the lego-plot of our process.

The probability that there is no additional soft interactions, as shown in (a), gives
the Survival Probability for the diffractive production.
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Large Rapidity Gaps (LRG)

• LRG are expected whenever we have a process where a colour singlet is exchanged in the t

channel.

• Historically, both Dokshitzer, Khoze and Troyan, AND Bjorken , suggested utilizing rapidity

gaps as a signature for Higgs production, in the W-W fusion process in hadron-hadron collisions.

• Following Bjorken’s notation : The fraction of events for which a LRG is expected, is the

product of two factors.

fgap =<| S |2> ·Fs

1) <| S |2> denotes the survival probability, i.e. the fraction of events for which the spectator

interactions do not fill the rapidity gap of interest.

2) Fs is the fraction of events due to t-channel singlet exchange.

• Bjorken by comparing the rate for the exchange of two gluons, in a colour singlet state, to the

exchange of one gluon in a colour octet state, estimated Fs to be about 15 %.

E. Gotsman MPI@TAU 4



Pictorial definition of <| S |2>

fgap=                  = <S2>σ(LRG)
σ(INCL)
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Experimental definition of LRG

• Experimentalists use a more practical definition of fgap. At the Tevatron fgap for LRG is

defined to be the ratio:

fgap =
cross section for dijet production with LRG

inclusive cross section for dijet production

The jets are required to have a transverse energy Ejet
T > 12 GeV at DO, and Ejet

T >

20 GeV at CDF.
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General Properties of < |S2| >

• A more apt name for < |S2| > would be ”suppression factor” of a hard process
accompanied by a rapgap.

• It depends on the probability for the initial state to survive, and is sensitive to
the spatial distribution of partons in the incoming hadrons. i.e. on the dynamics
of the diffractive part of the scattering matrix.

• < |S2| > is not universal, but depends on the particular hard process, as well as
the kinematic configuration.

• < |S2| > depends on the nature of the colour singlet (IP ,W/Z or γ) exchange
which generates the rapgap, as well as the distribution of partons inside the
proton in impact parameter space.
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Diffractive dijet production and diffractive DIS (KKMR)
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(c) The predictions for diffractive dijet production at the Tevatron, obtained from two alternative sets of ‘HERA’

diffractive parton distributions I and II compared with the CDF data. The upper two curves correspond to the neglect
of (< S2 >) ”rescattering corrections”, whereas the lower four curves show the effect of including these corrections

using model A (continuous curves) and model B (dashed curves) for the diffractive eigenstates.
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Calculation of < |S|2 > for Rapidity Gaps

• Depends on a parametrization of ”soft” Pomeron (model dependent).

• Rescattering process (”screening or ”absorption”) is usually approximated by
eikonal type model

• These models which include multi-Pomeron exchange, satisfy general principles
of Unitarity (Froissart bound)

• Multi-Pomeron interactions are crucial in diffractive production (soft and hard)

• Parametrization of Hard Scattering Process.
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GLM Formalism 1

Unitarity constraints:

Im Ti,k (s, b) = |Ti,k (s, b) |2 + Gin
i,k(s, b)

A simple solution to the above equation is: Ti,k(s, b) = i

„

1 − exp

„

−
Ωi,k(s,b)

2

««

,

where Ωi,k(s, b) is the opacity.

Since the opacity increases with energy, the number of multiple interactions, N ∝ Ωi,k(s, b) grows

(at larger optical density, we have a larger probability of interactions), leading to a smaller < |S2| >.

P S
i,k = exp

`

−Ωi,k(s, b)
´

is the probability that the initial projectiles (i, k) reach the final state interaction

unchanged, regardless of the initial state rescatterings, (i.e. no inelastic interactions).

...

+ + + ... + ...
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Examples of Pomeron diagrams

leading to diffraction NOT included in G-W mechanism
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Examples of the Pomeron

diagrams that lead to a different source of the diffractive dissociation that cannot be described in the framework of the G-W mechanism. (a) is

the simplest diagram that describes the process of diffraction in the region of large mass Y −Y1 = ln(M2/s0). (b) and (c) are examples of

more complicated diagrams in the region of large mass. The dashed line shows the cut Pomeron, which describes the production of hadrons.
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Example of enhanced and semi-enhanced diagram

a) b)

Different contributions to the Pomeron Green’s function
a) examples of enhanced diagrams ;

(occur in the renormalisation of the Pomeron propagator)
b) examples of semi-enhanced diagrams

(occur in the renormalisation of the IP -p vertex )
Multi-Pomeron interactions are crucial for the production of LARGE MASS

DIFFRACTION
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GLM Formalism 2

The input opacity Ωi,k(s, b) corresponds to an exchange of a single bare Pomeron.

Ωi,k(s, b) = gi(b) gk(b) P (s). (1)

P (s) = s∆IP and gi(b) is the Pomeron-hadron vertex parameterized in the form:

gi (b) = gi Si(b) =
gi

4π
m

3
i b K1 (mib) . (2)

Si(b) is the Fourier transform of 1

(1+q2/m2
i
)2

, where, q is the transverse momentum carried by the

Pomeron.

The Pomeron’s Green function that includes all enhanced diagrams is approximated using the

MPSI procedure, in which a multi Pomeron interaction (taking into account only triple Pomeron

vertices) is approximated by large Pomeron loops of rapidity size of ln s.

GIP (Y ) = 1 − exp

„

1

T (Y )

«

1

T (Y )
Γ

„

0,
1

T (Y )

«

, (3)

where T (Y ) = γ e∆IP Y and Γ (0, 1/T ) is the incomplete gamma function.
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Values of Parameters for our updated version

∆IP β α′
IP (GeV −2) g1 (GeV −1) g2 (GeV −1) m1 ( GeV) m2 (GeV)

0.23 0.46 0.028 1.89 61.99 5.045 1.71

∆IR γ α′
IR (GeV −2) gIR

1 (GeV −1) gIR
2 (GeV −1) R2

0,1 (GeV −1) G3IP (GeV −1)

- 0.47 0.0045 0.4 13.5 800 4.0 0.03

• g1(b) and g2(b) describe the vertices of interaction of the Pomeron with state 1
and state 2

• The Pomeron trajectory is 1 + ∆IP + α
′
IP t

• γ denotes the low energy amplitude of the dipole-target interaction
G3IP denotes the triple Pomeron coupling
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Comparison of the Energy Dependence of GLM and Experimental Data
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Survival Probability for exclusive central diffractive production of the Higgs boson
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Fig-a shows the contribution to the survival probability in the G-W mechanism
Fig-b illustrates the origin of the additional factor 〈| S2

enh |〉

Eikonal s-channel corrections give rise to the LRG survival probability of hard
diffraction.
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Central Production of Two Hard Jets
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Central production of two hard jets seperated by two large rapidity gaps from the
accompaning final state nucleons and/or diffractively exicited states.

E. Gotsman MPI@TAU 17



Survival Probability of diffractive Higgs production

〈| S2
2ch |〉 =

N(s)

D(s)
,

where,

N(s) =

Z

d2 b1 d2 b2

2

4

X

i,k

< p|i >2< p|k >2 Ai
H(s, b1) Ak

H(s, b2)(1 − A
i,k
S

((s, (b1 + b2)))

3

5

2

,

D(s) =

Z

d2 b1 d2 b2

2

4

X

i,k

< p|i >2< p|k >2 Ai
H(s, b1) Ak

H(s, b2)

3

5

2

.

As denotes the ”soft” strong interaction amplitude.
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For the ”hard” amplitude AH(b, s) we assume an input Gaussian b-dependence:

AH
i,k = AH(s) ΓH

i,k(b)

and

ΓH
i,k(b) = 1

π(RH
i,k

)2
e
− 2 b2

(RH
i,k

)2

The ”hard” radii are constants determined from HERA data on elastic and inelastic J/Ψ

production. We introduce TWO hard b-profiles

A
pp
H (b) =

Vp→p

2πBH
el

exp

 

− b2

2 BH
el

!

, and A
pdif
H (b) =

Vp→dif

2πBH
in

exp

 

− b2

2BH
in

!

.

The values BH
el =5.0 GeV −2 (?) and BH

in=1 GeV −2 have been taken from ZEUS data.

• Contrast to KMR treatment they assume: App
H (b) = Apdif

H (b) ∝ exp
“

− b2

2BH

”

• with BH
el = BH

inel = 4 GeV −2
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The dependence of < |S2| > at the LHC on BH
el and BH

in
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Other results for < |S2| >,

Calculations based on L.O. QCD by Bartels, Bondarenko, Kuta and Motyka
[P.R.,D73,093004 (2006)] find for W = 14 TeV

S2
(TPF ) = 0.024

They have also calculated corrections for hard rescattering which depend on the
value taken for αs.

Frankfurt, Hyde, Strikman and Weiss [P.R.,D75,054009 (2007)] in a partonic
approach,

have used a mean field approximation (independent hard and soft scattering).

They find that at LHC energies absorptive interactions of hard spectator partons
associated with the process g + g → H, reach the black disc region (for W >

√
2

TeV) and cause additional suppression.

Their result for W = 14 TeV is < |S2| > = 0.027
(with a hard slope Bg = 3.24GeV −2)
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Other results for < |S2| >, contd.

The Durham group (Khoze, Martin and Ryskin) [Eur.Phys.J.C71(2011)71], have
a model for soft interactions similar in spirit to GLM. Recently they have

improved their model to include a mechanism which mimics BFKL diffusion in kt.
This has now been incorporated into a Monte Carlo generator SuperCHIC.

Their result for the ”favored parametrization” for W = 14 TeV,
is 〈|S2|〉 = 0.015

Block and Halzen [Phys.Rev.D73(2006)054022] and Godbole,Grau,Pancheri and
Srivastava [Phys.Rev.D72(2005)076001], have obtained estimates for 〈|S2|〉,

ONLY considering the elastic channels.
(at the Tevatron (W =1800 GeV),σsd+σdd

σel
≈ 0.9)

BH quote values: W = 1.8 TeV 〈|S2|〉 = 0.2
W = 14 TeV 〈|S2|〉 = 0.126

GGPS find that for W = 14 TeV 〈|S2|〉 is 0.05 - 0.1 .

Models neglecting diffractive channels, appear to give too large estimates of
〈|S2|〉.
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GLM and KMR results for < S2 > (%)

W (TeV) GLM GLM KMR

BH = 5 GeV −2 BH = 4 GeV −2 BH = 4 GeV −2

0.63 11.7 9.14

1.8 7.02 5.12 6.0

7 2.98 1.94 2.4

8 2.7 1.74

14 1.75 1.07 1.5

At W = 14 TeV; FHSW calculate < S2 > (%) = 2.4

BBKM find find < S2 > (%) = 2.7
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Conclusions

• Soft scattering sector: Models are compatible.

• Hard production process: sensitive to values of parameters, ”Hard slope” etc.

• My estimation is that results for < |S2| > have an uncertainty of at least 50%.

• Suprizing that completely different approaches
A) Partonic e.g. BBKM and FHSW

B) RFT e.g. KMR and GLM

yield results for < |S2| > that are so close.
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Results of GLM model

√
s TeV 1.8 7 8

σtot mb 79.2 98.6 101.

σel mb 18.5 24.6 25.2

σsd(M ≤ M0) mb 10.7 + (2.8)nGW 10.9 + (2.89)nGW

σsd(M
2 < 0.05s)mb 9.2+ (1.95)nGW 10.7 + (4.18)nGW 10.9 + (4.3)nGW

σdd mb 5.12 + (0.38)nGW 6.2 + (1.166)nGW 6.32 + (1.29)nGW

Bel GeV −2 17.4 20.2 20.4

BGW
sd GeV −2 6.36 8.01 8.15

σinel mb 60.7 74. 75.6
dσ
dt |t=0 mb/GeV 2 326.34 506.4 530.7

√
s TeV 14 57

σtot mb 109.0 130.0

σel mb 27.9 34.8

σsd(M
2 < 0.05s) mb 11.5 +(5.81)nGW 13.0 + (8.68)nGW

σdd mb 6.78 + (1.59)nGW 7.95 + (5.19)nGW

Bel GeV −2 21.6 24.6

σinel mb 81.1 95.2
dσ
dt |t=0 mb/GeV 2 608.11 879.2

Predictions of our model for different energies W . M0 is taken to be equal to 200GeV as ALICE measured the

cross section of the diffraction production with this restriction.
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Comparison of the results of GLM model and data at 7 and 57 TeV

W σmodel
tot (mb) σ

exp
tot (mb) σmodel

el (mb) σ
exp
el

(mb)

7 TeV 98.6 TOTEM: 98.6 ±2.2 24.6 TOTEM: 25.4±1.1

W σmodel
in (mb) σ

exp
in (mb) Bmodel

el (GeV −2) B
exp
el

(GeV −2)

7 TeV 74.0 CMS: 68.0±2syst ± 2.4lumi ± 4extrap 20.2 TOTEM: 19.9±0.3

ATLAS: 69.4±2.4exp ± 6.9extrap

ALICE: 73.2 (+2./ − 4.6)model ± 2.6lumi

TOTEM: 73.5 ±0.6stat ± 1.8syst

W σmodel
sd (mb) σ

exp
sd

(mb) σmodel
dd (mb) σ

exp
dd

(mb)

7 TeV 10.7GW + 4.18nGW ALICE : 14.9(+3.4/-5.9) 6.21GW + 1.24nGW ALICE: 9.0 ± 2.6

W σmodel
tot (mb) σ

exp
tot (mb)

57 TeV 130 AUGER*: 133 ±13stat ± 17sys ± 16Glauber

σmodel
inel (mb) σ

exp
inel

(mb)

95.2 AUGER*: 92 ±7stat ± 11syst ± 7Glauber

*AUGER collaboration Phys.Rev.Lett.109,062002 (20112)
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GLM Differential cross section and Experimental Data at 1.8 and 7 TeV

 dσel/dt(mb/GeV2)

LHC(8 TeV) × 0.1

LHC(7 TeV) × 0.1
LHC(14 TeV) × 0.01
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dσel/dt versus |t| at Tevatron (blue curve and data)) and LHC ( black curve and data) energies (W = 1.8 TeV ,

8 TeV and 7 TeV respectively) The solid line without data shows our prediction for W = 14 TeV .
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Good-Walker Formalism

The Good-Walker (G-W) formalism, considers the diffractively produced hadrons
as a single hadronic state described by the wave function ΨD, which is

orthonormal to the wave function Ψh of the incoming hadron (proton in the case
of interest) i.e. < Ψh|ΨD >= 0.

One introduces two wave functions ψ1 and ψ2 that diagonalize the 2x2 interaction
matrix T

Ai,k =< ψiψk|T|ψi′ ψk′ >= Ai,k δi,i′ δk,k′.

In this representation the observed states are written in the form

ψh = αψ1 + β ψ2 ,

ψD = −β ψ1 + αψ2

where, α2 + β2 = 1
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Good-Walker Formalism-2

The s-channel Unitarity constraints for (i,k) are analogous to the single channel
equation:

ImAi,k (s, b) = |Ai,k (s, b) |2 +Gin
i,k(s, b),

Gin
i,k is the summed probability for all non-G-W inelastic processes, including

non-G-W ”high mass diffraction” induced by multi-IP interactions.

A simple solution to the above equation is:

Ai,k(s, b) = i

(

1 − exp

(

−Ωi,k(s, b)

2

))

, Gin
i,k(s, b) = 1 − exp (−Ωi,k(s, b)) .

The opacities Ωi,k are real, determined by the Born input.
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Good-Walker Formalism-3

Amplitudes in two channel formalism are:

ael(s, b) = i{α4A1,1 + 2α2β2A1,2 + β4A2,2},

asd(s, b) = iαβ{−α2A1,1 + (α2 − β2)A1,2 + β2A2,2},

add(s, b) = iα2β2{A1,1 − 2A1,2 +A2,2}.

With the G-W mechanism σel , σsd and σdd occur due to elastic scattering
of ψ1 and ψ2, the correct degrees of freedom.
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