PYTHIA DIPSY Correlations and fluctuations

PYTHIA and DIPSY MPI, small *x*, correlations, and diffraction

in pp collisions

Gösta Gustafson

Department of Theoretical Physics Lund University

Tel Aviv, 14-18 Oct., 2012

э

< □ > < 同

Content

1. PYTHIA MC (T. Sjöstrand):

Very good description of inelastic reactions in DIS and pp

Needs input structure functions determined by data

Simplified assumptions about correlations and diffraction

2. DIPSY (C. Flensburg, GG, L. Lönnblad): Understand underlying dynamics in more detail (at the cost of lower precision)

Evolution of parton densities to small x

Correlations and fluctuations

Diffraction

(Nucleus coll.)

ΡΥΤΗΙΑ

Assume interaction dominated by perturbative parton-parton subcollisions

Color charge screened \Rightarrow

small p_{\perp} suppressed in hard subcollisions

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\boldsymbol{p}_{\perp}^2} \propto \frac{\alpha_{\mathrm{s}}^2(\boldsymbol{p}_{\perp}^2)}{\boldsymbol{p}_{\perp}^4} \rightarrow \frac{\alpha_{\mathrm{s}}^2(\boldsymbol{p}_{\perp 0}^2 + \boldsymbol{p}_{\perp}^2)}{(\boldsymbol{p}_{\perp 0}^2 + \boldsymbol{p}_{\perp}^2)^2}$$

Higher energy \Rightarrow higher parton density \Rightarrow stronger screening

$$\mathbf{p}_{\perp 0}(\mathbf{\textit{E}}_{\mathrm{CM}}) = \mathbf{\textit{p}}_{\perp 0}^{\mathrm{ref}} imes \left(rac{\mathbf{\textit{E}}_{\mathrm{CM}}}{\mathbf{\textit{E}}_{\mathrm{CM}}^{\mathrm{ref}}}
ight)^{\epsilon}$$

Matter profile in impact-parameter space

Simple Gaussian or more peaked variants

BFKL: random walk in transverse space: *x*-dependent proton size

$$\rho(r,x) \propto \frac{1}{a^3(x)} \exp\left(-\frac{r^2}{a^2(x)}\right) \quad \text{with} \quad a(x) = a_0 \left(1 + a_1 \ln \frac{1}{x}\right)$$

 a_1 and a_0 tuned to **rise** of $\sigma_{
m ND}$ $a_1 \approx 0.15 \Rightarrow a_0 \approx constant$, indep. of s

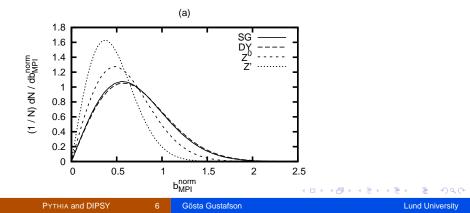
(Corke-Sjöstrand, JHEP 05 (2011) 009)

PYTHIA DIPSY Correlations and fluctuations

Convolution of two protons gives impact parameter shape

$$\tilde{\mathcal{O}}(b; x_1, x_2) = \frac{1}{\pi} \frac{1}{a^2(x_1) + a^2(x_2)} \exp\left(-\frac{b^2}{a^2(x_1) + a^2(x_2)}\right)$$

 $\bar{n}(b) = \text{average number of interactions for passage at } b$
 $\bar{n}(b) = \sum_{i,j} \iiint dx_1 dx_2 dp_{\perp}^2 f_i(x_1, p_{\perp}^2) f_j(x_2, p_{\perp}^2) \frac{d\hat{\sigma}_{ij}}{dp_{\perp}^2} \Big|_{\text{reg}} \tilde{\mathcal{O}}(b; x_1, x_2)$
Gives $\sqrt{\langle b^2 \rangle}$ for σ_{ND}
 $a_{1 = 1.00}^{(b)}$
 $a_{1 = 1.00}^{(b)}$
 $a_{1 = 1.00}^{(b)}$
 $a_{1 = 1.00}^{(b)}$
 $a_{1 = 1.00}^{(c)}$
 $a_{1 = 1.00}^{(c)}$

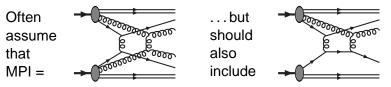

PYTHIA and DIPSY

Gösta Gustafson

Consequence:

collisions at large x will have to happen at small b

 \Rightarrow further large-to-medium-*x* MPIs are enhanced, while low-*x* partons are so spread out that it plays less role.



Other features

Further correlations

ISR and MPI compete for beam momentum \rightarrow PDF rescaling + flavour effects (valence, $q\bar{q}$ pair companions, ...) + correlated primordial k_{\perp} and colour in beam remnant

Rescattering

Same order in $\alpha_{\rm S},\sim$ same propagators, but small contribution to double scattering

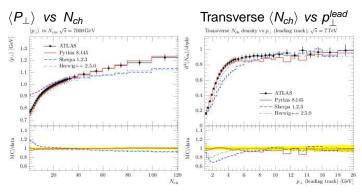
Not included in default version

Interleaved evolution

Transverse-momentum-ordered parton showers for ISR, FSR, and MPI

$$\begin{array}{ll} \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}\boldsymbol{p}_{\perp}} & = & \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MPI}}}{\mathrm{d}\boldsymbol{p}_{\perp}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}\boldsymbol{p}_{\perp}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{FSR}}}{\mathrm{d}\boldsymbol{p}_{\perp}} \right) \\ & \times & \exp\left(- \int_{\boldsymbol{p}_{\perp}}^{\boldsymbol{p}_{\perp}\max} \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MPI}}}{\mathrm{d}\boldsymbol{p}_{\perp}'} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}\boldsymbol{p}_{\perp}'} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{FSR}}}{\mathrm{d}\boldsymbol{p}_{\perp}'} \right) \mathrm{d}\boldsymbol{p}_{\perp}' \right) \end{array}$$

Ordered in decreasing p_{\perp} using "Sudakov" trick.


Affects the number of secondary interactions

Hard trigger

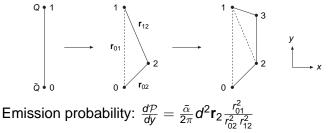
Theoretical trigger for hard interactions available in the MC

PYTHIA DIPSY Correlations and fluctuations

Final states: Add FSR and hadronization Many partons close in space–time \Rightarrow colour rearrangement: Reduction of total string length \Rightarrow steeper $\langle p_{\perp} \rangle (n_{ch})$ Some results and comparisons with HERWIG++ and SHERPA:

(A. Buckley et al., Phys. Rep. 504 (2011) 145 (MCnet/11/01, arXiv:1101.2599[hep-ph])

PYTHIA and DIPSY


DIPSY

MC generator based on BFKL evolution and saturation Based on Mueller's Dipol model:

LL BFKL evolution in transverse coordinate space

Colour charge always screened by accompanying anticharge

Gluon emission: dipole splits in two dipoles:

LHC pp

Dipole-dipole scattering

Single gluon exhange \Rightarrow Colour reconnection between projectile and target

Multiple interactions:

Stochastic process \Rightarrow Born ampl. $F = \sum_{ij} f_{ij}$

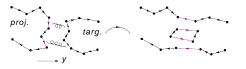
Unitarity: Eikonal approx. in imp. parameter space

Uniterized ampl.: $T = 1 - e^{-\sum f_{ij}}$ (neglecting fluctuations)

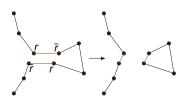
$$d\sigma_{el}/d^2b = T^2$$
, $d\sigma_{tot}/d^2b = 2T$

イロト イポト イヨト イヨト

The Lund cascade model, DIPSY


Includes:

- Important non-leading effects in BFKL evol. (most essential rel. to energy cons. and running α_s)
- Saturation from pomeron loops in the evolution (Not included by Mueller or in BK)
- Confinement \Rightarrow *t*-channel unitarity
- MC DIPSY
 - gives also fluctuations and correlations
- Applicable to collisions between electrons, protons, and nuclei


くロト (得) (目) (日)

Saturation

Multiple interactions \Rightarrow colour loops \sim pomeron loops

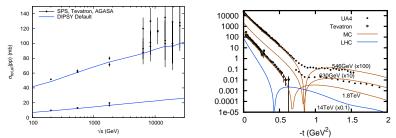
Gluon scattering is colour suppressed compared to gluon emission \Rightarrow Loop formation related to identical colors.

Same colour \Rightarrow quadrupole

May be better described by recoupled smaller dipoles

 \Rightarrow smaller cross section: fixed resolution \Rightarrow effective

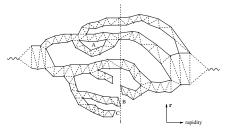
 $2 \rightarrow 1 \text{ and } 2 \rightarrow 0 \text{ transitions}$


LHC pp

pp total and elastic cross sections

Initial proton wavefunction \sim three dipoles in a triangle

 σ_{tot} and σ_{el}



э

Exclusive final states

Schematic picture: BFKL is a stochastic process: independent dipole-dipole interactions

Non-interacting branches cannot come on shell.

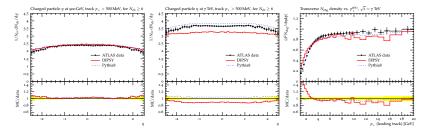
To get final states:

- Determine which dipoles interact
- Absorbe non-interacting chains
- Determine final state radiation
- Hadronize

LHC pp

Correlations and fluctuations,

Comparisons to ATLAS data


[JHEP 2011, arXiv:1103.4321]

Min bias

 η distrib. charged particles 0.9 TeV

Underlying event

N_{ch} in transv. region vs p^{lead}, 7 TeV

7 TeV

Our aim to get dynamical insight, not to give precise predictions At present no quarks, only gluons

PYTHIA and DIPSY

6

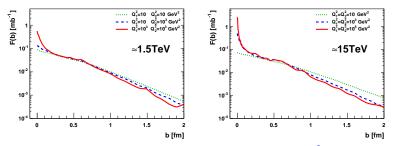
Gösta Gustafson

Lund University

Correlations. Double parton distributions

Define double parton distribution and imp. param. profile *F*: $\Gamma(x_1, x_2, b; Q_1^2, Q_2^2) \equiv D(x_1, Q_1^2) D(x_2, Q_2^2) F(b; x_1, x_2, Q_1^2, Q_2^2),$ and effective cross section: $\sigma_{(A,B)}^D \equiv \frac{1}{(1+\delta_{AB})} \frac{\sigma_A^S \sigma_B^S}{\sigma_{eff}}$ For double hard interactions at midrapidity this gives:

 $\sigma_{\rm eff} = \left[\int d^2 b (F(b))^2\right]^{-1}$


F and $\sigma_{\rm eff}$ often assumed to depend only weakly on x_i and Q_i^2

イロト 不得 トイヨト イヨト 三日

DIPSY Correlations and fluctuations Diffraction

Correlation function F(b)

Depends on both x and Q^2

Spike (hotspot) developes for small b at larger Q^2

Fourier transform: $D(x_1, x_2, Q_1^2, Q_2^2; \vec{\Delta})$ (Blok *et al.*)

Spike for small $b \Rightarrow$ tail for large momentum imbalance Δ

[JHEP 2011, arXiv:1103.4320]

18

DIPSY[°] Correlations and fluctuations Diffraction

 $\Rightarrow \sigma_{\rm eff}$ depends strongly on Q² for fixed $\sqrt{\rm s}$

Q ₁ ² , Q ₂ ² [GeV ²], x ₁ , x ₂				$\sigma_{ m eff}$ [mb]	∫ <i>F</i>
1.5 TeV, midrapidity					
10	10	0.001	0.001	35.3	1.09
10 ³	10 ³	0.01	0.01	23.1	1.06
15 TeV, midrapidity					
10	10	0.0001	0.0001	40.4	1.11
10 ³	10 ³	0.001	0.001	26.3	1.07
10 ⁵	10 ⁵	0.01	0.01	19.6	1.03

Part of the correlations is due to fluctuations

No fluct. $\Rightarrow \int d^2 b F(b) = 1$; the MC gives ~ 1.1

< < >> < <</>

Fluctuations cause Diffractive excitation

Good–Walker formalism

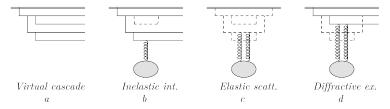
Projectile with a substructure

The mass eigenstates, Ψ_k , can differ from the eigenstates of diffraction, Φ_n (with eigenvalues T_n)

Elastic amplitude: $\langle \Psi_{in} | T | \Psi_{in} \rangle = \langle T \rangle$, $d\sigma_{el}/d^2b = \langle T \rangle^2$

Ampl. for transition to state Ψ_k given by $\langle \Psi_k | T | \Psi_{in} \rangle$

Total diffractive cross section (incl. elastic):


$$d\sigma_{diff}/d^2b = \sum_k \langle \Psi_{in}|T|\Psi_k \rangle \langle \Psi_k|T|\Psi_{in} \rangle = \langle T^2 \rangle$$

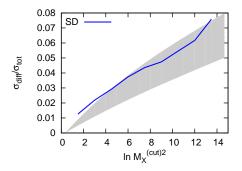
 $d\sigma_{diff\ ex}/d^2b=d\sigma_{diff}-d\sigma_{el}=\langle T^2
angle-\langle T
angle^2=V_T$

ヘロト 人間 とくほ とくほ とう

What are the diffractive eigenstates?

Parton cascades, which can come on shell through interaction with the target.

BFKL dynamics \Rightarrow Large fluctuations,

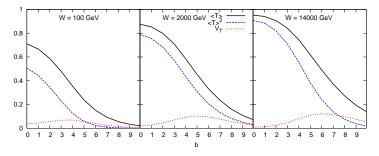

Continuous distrib. up to high masses

(Also Miettinen-Pumplin (1978), Hatta et al. (2006))

Correlations and fluctuations Diffraction Conclusions

DIPSY: pp 1.8 TeV

Single diffractive cross section for $M_X^2 < M_{max}^2$ Shaded area: Estimate of CDF result


Note: Tuned only to σ_{tot} and σ_{el} . No new parameter

PYTHIA and DIPSY

Impact parameter profile

Saturation \Rightarrow Fluctuations suppressed in central collisions Diffr. excit. largest in a circular ring,

expanding to larger radius at higher energy

Factorization broken between pp and DIS

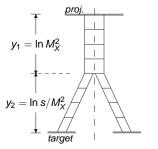
PYTHIA and DIPSY

Correlations and fluctuations^{*} Diffraction Conclusions

Relation Good–Walker vs triple-pomeron

Claim: Good–Walker and Triple-pomeron describe the same dynamics

Triple-pomeron:

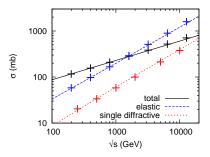

$$rac{d\sigma_{SD}}{d\ln M^2} \sim g^3_{
m pP} g_{3P} (rac{s}{M^2})^{2(lpha_P-1)} (M^2)^{lpha_P-1}$$

Due to the stochastic nature of the BFKL cascade:

 \Rightarrow # dipoles satisfy approx. KNO scaling:

$$\sigma^{2}\approx \langle \textit{n}\rangle^{2}$$

(For more details see arXiv:1206.1733)



Correlations and fluctuations Diffraction Conclusions

DIPSY results have the expected triple-regge form

BARE pomeron (Born amplitude without saturation effects)

Total, elastic and singel diffractive cross sections

Triple-Regge fit with a single pomeron pole

 $\begin{aligned} \alpha(0) &= 1.21, \quad \alpha' = 0.2 \,\text{GeV}^{-2} \\ g_{\rho P}(t) &= (5.6 \,\text{GeV}^{-1}) \,e^{1.9t}, \quad g_{3P}(t) \approx 1 \,\text{GeV}^{-1}_{+ \text{ o}} \left(\text{dep. on def.}\right) \quad \text{ for all university} \end{aligned}$

Exclusive final states in diffraction

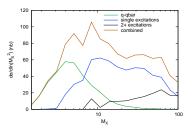
- If gap events are analogous to diffraction in optics \Rightarrow
- Diffractive excitation fundamentally a quantum effect
- Different contributions interfere destructively, no probabilistic picture
- Still, different components can be calculated in a MC, added with proper signs, and squared
- Possible because opt. th. \Rightarrow all contributions real

[arXiv:1210.2407]

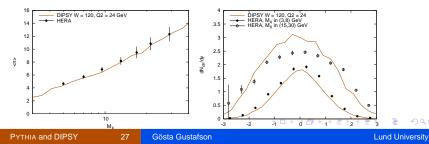
(Makes it also possible to take Fourier transform and get $d\sigma/dt$. JHEP 1010, 014, arXiv:1004.5502)

イロト イボト イヨト イヨト

Correlations and fluctuations Diffraction Conclusions

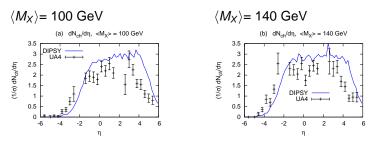

Early results for DIS ($W = 120 \text{ GeV}, Q^2 = 24 \text{ GeV}^2$):

Distrib. in $\ln M_X^2$


separated in parton states with $q\bar{q}$ + 0, 1, and \geq 2 gluons

(cutoff for $M_X > 50$ GeV due to Lorentz frame used)

Hadronic state: $\langle n_{ch} \rangle$ vs M_X


 $dn_{ch}/d\eta$ in 2 M_X -bins

Correlations and fluctuations Diffraction Conclusions

pp collisions:

Early result for $dn_{ch}/d\eta$ at W = 546 GeV,

Too hard for large η . Due to lack of quarks in proton wavefunction; no forward baryon

Has to be added in future improvements

Note: Based purely on fundamental QCD dynamics

Conclusions:

1. Pythia

Recent developments related to MPI:

- x-dependent proton size
- rescattering
- Two hard trigger processes in MPI
- MPI framework for hard diffraction
- Central diffraction

Generally very good agreement with data

< □ > < 同 > < 回 > < 回 > < 回 > < 回

2. DIPSY

Can data be understood from QCD evolution and saturation?

Model with no input pdf:s, no tunable soft cutoff for hard subcollisions, no input diffractive pdf:s or pomeron flux factors

- MC gives correlations, fluctuations, and expansion in b-space
- Double parton distr. strongly dependent on Q^2 and x
- Works well for inclusive observables
- Fair description of exclusive final states (also in diffraction)
- Diffraction described in Good–Walker formalism also for high masses
- Applicable for e, p, and A collisions

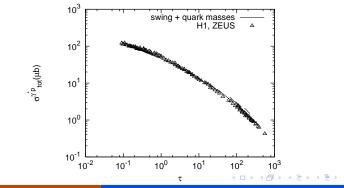
くロト (得) (目) (日)

Diffraction Conclusions Extra slides

Extra slides

PYTHIA and DIPSY

◆□→ ◆圖→ ◆国→ ◆国→

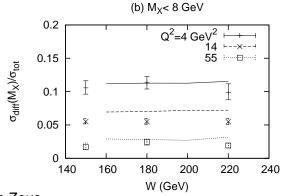

Diffraction[^] Conclusions Extra slides

Structure functions

 $F_2({f x},{f Q}^2)\sim \gamma^*{f p}$ cross section

 $\gamma^{\star}
ightarrow q ar{q}$ dipole wavefunction from QED

Satisfies geometric scaling. $au = Q^2/Q_s^2(x)$, $Q_s^2 \propto x^{-0.3}$


PYTHIA and DIPSY

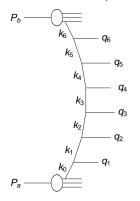
Gösta Gustafson

Diffraction Conclusions Extra slides

Diffractive excitation in DIS

Example $M_X < 8$ GeV, $Q^2 = 4, 14, 55$ GeV².

Data from Zeus


⇒ < ⇒ >

Diffraction Conclusions Extra slides

Exclusive final states

BFKL: Inclusive

In momentum space

Exclusive: CCFM

Inclusive:

Cross section determined by "backbone" emissions, where k_{\perp} gets a big kick: " k_{\perp} -changing emissions"

(either $k_{\perp i} \gg k_{\perp i-1}$; $q_{\perp i} \simeq k_{\perp i}$ or $k_{\perp i} \ll k_{\perp i-1}$; $q_{\perp i} \simeq k_{\perp i-1}$) (Lund 1996, Salam 1999)

Exclusive:

Select backbone chains Reabsorbe remaining gluons add FSR & hadronization

Fluctuations

Fluctuations modify unitarization effects

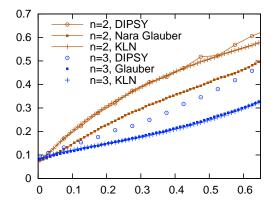
Born ampl. $F \Rightarrow$ Uniterized ampl. $T = 1 - e^{-F}$

F fluctuates from event to event \Rightarrow

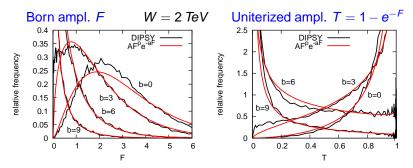
Elastic ampl. given by $\langle T \rangle = \langle 1 - e^{-F} \rangle \neq 1 - e^{-\langle F \rangle}$

Suppresses interaction for small *b*, and enhances it for larger *b*-values

(Cf. "diffusive scaling")


Fluctuations give also odd eccentricity moments triangular flow in *pp* and *AA* collisions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●


Diffraction Conclusions Extra slides

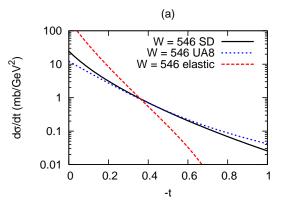
Eccentricities in PbPb coll. at $\sqrt{s_{NN}}$ = 2.76 GeV

for n = 2,3 from DIPSY, MC-KLM, and Glauber MC

Fluctuations in *pp* amplitudes

Born approximation: large fluctuations

 $\langle F \rangle$ is large \Rightarrow Unitarity effects important


 \sim enhanced diagrams in triple-regge formalism

Fluctuations strongly reduced for central collisions

t-dependence

Single diffractive and elastic cross sections

Agrees with fit to UA8 data

Nonleading effects in the BFKL evolution

Energy conservation (~ non-sing. terms in P(z))

small dipole — high $p_{\perp} \sim 1/r$

Cascade ordered in p_+

 \Rightarrow small dipoles suppressed for small δy

"Energy scale terms" ~ "consistency constraint"

 \Rightarrow Cascade ordered in p_-

A single chain is left-right symmetric

• Running α_s

イロト 不得 トイヨト イヨト

Exclusive diffractive states

Diffraction is a quantum effect \Rightarrow interference is important \Rightarrow no probabilistic picture

But: positive and negative contributions to the amplitude can be generated by DIPSY, added, and squared.

Toy model example

System with a valence particle, which can emit a single gluon

2 states: valence only $\Psi_0 = |1,0\rangle$

valence + gluon $\Psi_1 = |1, 1\rangle$

Probability for emission: β^2 prob. for no em.: $\alpha^2 = 1 - \beta^2$

General state $\Psi = a\Psi_0 + b\Psi_1 \equiv \begin{pmatrix} a \\ b \end{pmatrix}$

Diffraction[^] Conclusions Extra slides

Assume an initial state Ψ which evolves to a cascade Φ at the time of interaction with the target

$$\Phi = U_{\rm evol} \Psi$$

Evolution operator U_{evol} is a unitary matrix = $\begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$

Eikonal interaction operator $U_{\text{int}} = \begin{pmatrix} e^{-f_0} & 0 \\ 0 & e^{-f_0 - f_1} \end{pmatrix}$

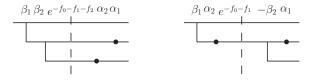
$$\Psi_{out} = S\Psi_{in} = U_{\mathrm{evol}}^{\dagger}U_{\mathrm{int}}U_{\mathrm{evol}}\Psi_{in}$$

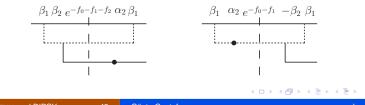
Diffraction^{*} Conclusions Extra slides

Elastic scattering:

Elastic amplitude

$$T_{11} = 1 - S_{11} = 1 - \alpha^2 e^{-f_0} - \beta^2 e^{-f_0 - f_1} = \alpha^2 (1 - e^{-f_0}) + \beta^2 (1 - e^{-f_0 - f_1})$$


Diffractive excitation:


 $T_{21} = -S_{21} = -\alpha\beta e^{-f_0 - f_1} - \alpha(-\beta)e^{-f_0} = \alpha\beta e^{-f_0} (1 - e^{-f_1}), \quad \text{and } f_1 = e^{-f_1}$

Cascade with 2 possible emissions

Ex.: Final state with both emissions

Final state with only the second emission

Diffraction[^] Conclusions Extra slides

Generalizations:

Continuous cascades

Independent gluon emissions \rightarrow dipole cascade

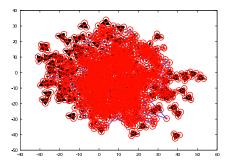
Include target cascade

Calculations:

Collide many similar real cascades (emissions before and after interaction) which interfer

Collide with large no. of target cascades

Computationally demanding, but still possible in the MC


< □ > < 同

Diffraction[®] Conclusions Extra slides

Nucleus collisions

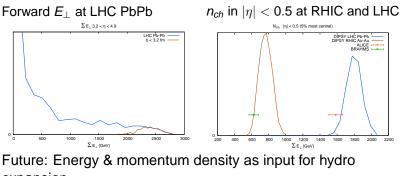
Gives full partonic picture:

Ex.: *Pb* – *Pb* 200 GeV/*N*

Accounts for:

saturation within the cascades,

correlations and fluctuations (gives e.g. triangular flow),

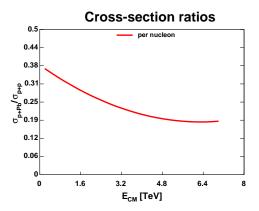

finite size effects

The interaction gives a dense gluon soup

Independent FSR and hadronization \Rightarrow too many particles

Toy model "thermalization":

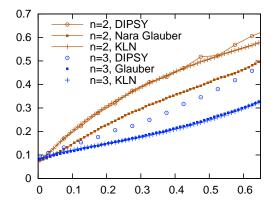
allow gluons within 1 fm to interact and reconnect


expansion

< ロ > < 同 > < 回 > .

Diffraction[^] Conclusions Extra slides

pA collisions


Shadowing: $R = \sigma_{pA} / A \sigma_{pp}$

(신문) (신문)

Eccentricities in PbPb coll. at $\sqrt{s_{NN}}$ = 2.76 GeV

for n = 2,3 from DIPSY, MC-KLM, and Glauber MC

