Key features of MPI Dynamics

Yuri Dokshitzer LPTHE, Paris-VI & PNPI, St Petersburg

> Tel Aviv October 15, 2012

Multi-Parton Interactions

- potential source of extra "background" to multi-jet production
- potential source of extra information about structure of the proton

Obviously, MPI physics bound to be complicated.

Two approaches to attacking MPI problems :

a formal bookkeeping of all possible flavor, spin, color combinations that one may encounter when discussing multi-parton configurations

an approach aiming at predicting observable cross sections by exploiting limited information we have gained from previous life

IT IS THE SECOND ROOT THAT WE TOOK - AND KEEP TREADING -WITH BORIS BLOK, LONYA FRANKFURT AND MARK STRIKMAN

- Basic motivation: search for adequate QCD means for describing MPI
- Surprise : search for QFT means, prior to QCD means !

What have we achieved ?

Understood the origin of the fake on-mass-shell singularities Introduced Generalized Double Parton Distributions 2GPD Constructed the first model for 2GPD (building up on HERA GPDs) Introduced 3-parton collisions as an essential extra Sorted out the confusing role of "2->4 parton collisions" (ain't any MPI) Explained the Tevatron enhancement puzzle as being due to 3->4 Proposed a model for non-PT correlations at small x (inelastic diffraction)

The Four jet production at LHC and Tevatron in QCD Phys. Rev. D83 : 071501, 2011; e-Print: arXiv:1009.2714 [hep-ph]

pQCD Physics of Multiparton Interactions Eur.Phys.J. C72 (2012) 1963; e-Print: arXiv:1106.5533 [hep-ph]

Origins of Parton Correlations in Nucleon and Multi-Parton CollisionsPRL to appear;e-Print: arXiv:1206.5594 [hep-ph]

prelude

At high energies the rich QFT-structure of hadron constituents becomes visible.

To resolve the internal structure of interacting objects we probe them with large momentum transfer processes - "hard interactions"

$$\frac{d\sigma}{dQ^2} \propto \frac{1}{Q^4} \qquad \qquad Q^2 \gg R^{-2}$$

Hadron structure matters little in such standard (small-cross section) hard interactions. Colliding **hadrons** serve as sources of two colliding **partons**, in inclusive manner: $D_h^p(x, Q^2)$

The size - and the buildup - of the hadron manifests itself in *multi-parton collisions*

$$\frac{d\sigma}{dQ^2} \propto \frac{1}{Q^4} \times \frac{1}{R^2 Q^2}$$

This may seem a small ("higher twist") correction to the total cross section. And so it is. In specific circumstances turns out to be **significant** (comparable with the "Leading Twist")

e.g., 4-jet production in the back-to-back kinematics

2-parton collision

The standard approach to the multi-jet production is the QCD improved parton model.

It is based on the assumption that the cross section of a hard hadron-hadron interaction is calculable in terms of the convolution of parton distributions within colliding hadrons with the cross section of a hard *two-parton collision*.

Result of the impact parameter integration - squaring of the amplitude in the momentum space:

$$\int \frac{d^2 k_{\perp}}{(2\pi)^2} \psi(x,k_{\perp}) \int \frac{d^2 k'_{\perp}}{(2\pi)^2} \psi^{\dagger}(x,k'_{\perp}) \times \int d^2 \rho \ e^{i\vec{\rho}\cdot(\vec{k}_{\perp}-\vec{k}'_{\perp})} = \int \frac{d^2 k_{\perp}}{(2\pi)^2} \ \psi(x,k_{\perp}) \times \psi^{\dagger}(x,k_{\perp})$$

An application of this picture to the processes with production of, e.g., *four jets* implies that all jets in the event are produced in a hard collision of *two* initial state partons.

Recent data of the CDF and D0 Collaborations provide evidence that there exists a kinematical domain where a more complicated mechanism becomes important :

double hard interaction

of two partons in one hadron *with two partons* in the second hadron.

Let us see, what difference does it make to our formulae

multi-partons

Multi-parton wave function

$$\psi_n \ (x_1, \vec{\rho}_1, x_2, \vec{\rho}_2, \ldots) = \int \prod_{i=1}^{i=n} \frac{d^2 k_i}{(2\pi)^2} \exp(i \sum_{i=1}^{i=n} \vec{k}_i \vec{\rho}_i) \ \psi_n(x_1, \vec{k}_1, x_2, \vec{k}_2, \ldots) (2\pi)^2 \delta(\sum \vec{k}_i)$$

Inclusive 2-parton probability distribution in the impact parameter space :

$$D (x_1, x_2, \vec{\rho_1}, \vec{\rho_2}) = \sum_{n=3}^{n=\infty} \int \prod_{i\geq 3}^{i=n} \left[dx_i d^2 \rho_i \right] \psi_n(x_1, \vec{\rho_1}, x_2, \vec{\rho_2}, \dots, x_i, \vec{\rho_i}, \dots) \psi_n^+(x_1, \vec{\rho_1}, x_2, \vec{\rho_2}, \dots, x_i, \vec{\rho_i}, \dots) \delta(\sum_{i=1}^{i=n} x_i \vec{\rho_i})$$

Before:

Independent impact parameter integration \longrightarrow equality of parton momenta in ψ and ψ^{\dagger} $k_{\perp}~=~k_{\perp}'$

$$\rho_{1} + \rho_{2} \longrightarrow k_{1}' - k_{1} = -(k_{2}' - k_{2}) \equiv \Delta$$

$$\rho_{3} + \rho_{4} \longrightarrow k_{3}' - k_{3} = -(k_{4}' - k_{4}) \equiv \widetilde{\Delta}$$

$$(\rho_{1} - \rho_{2}) + (\rho_{3} - \rho_{4}) \longrightarrow \Delta = -\widetilde{\Delta}$$

$$\delta((\rho_{1} - \rho_{2}) - (\rho_{3} - \rho_{4})) \longrightarrow \widetilde{\Delta} \text{ arbitrary}$$

4-parton collision

In order to be able to trace the *relative distance between the partons*, one has to use the mixed *longitudinal momentum – impact parameter* representation which, in the momentum language, reduces to introduction of a **mismatch** between the transverse momentum of the parton in the *amplitude* and that of the same parton in the *amplitude conjugated*.

We have examined the *transverse momentum* structure of the interaction amplitude

Now, have a look at the *longitudinal momenta* of participating partons ...

An underwater stone of the MPI analysis

A tree Feynman diagram. Momenta of internal parton lines are fixed ... not anymore

Singularities in the physical region of parton momenta !

Return to a good old single hard interaction picture :

In DIS we trace the fate of **1** but *integrate* over "histories" of the accompanying parton **2**.

Now we want #2 to enter 2nd hard interaction.

In the above picture it does it "in the next room". Or on the Moon, for that matter ...

In fact, partons **3** and **4** *cannot be* represented by plainly independent *plane waves*: they belong to *one hadron*, and therefore, are *localized within the hadron pancake*...

Remedy: introduce wave packet smearing (longitudinal momentum fraction integral). Importantly, this has to be done at the *amplitude level* !

 $k_{3+} + k_{4+}$ fixed by hard scattering kinematics

 $k_{3+}-k_{4+}$ arbitrary

The fake singularity disappears !

Generalized double parton distributions

4-parton cross section

$$\frac{1}{S} = \frac{\int \frac{d^2 \vec{\Delta}}{(2\pi)^2} D_a(x_1, x_2; \vec{\Delta}) D_b(x_3, x_4; -\vec{\Delta})}{D(x_1) D(x_2) D(x_3) D(x_4)}$$

S - effective parton interaction area (**S** - *is NOT a "cross section"*!)

$$\frac{d\sigma(x_1, x_2, x_3, x_4)}{d\hat{t}_1 d\hat{t}_2} = \frac{d\sigma^{13}}{d\hat{t}_1} \frac{d\sigma^{24}}{d\hat{t}_2} \times \frac{1}{S}$$

D - the generalized double parton distribution - is a new object we know little about.

Can one model it, for lack of anything better ?

Failure of the independent parton approximation and a viable model for non-PT intra-hadron 2-parton correlations

Note : the analogy is *imperfect*. **OK** for high enough energies: $A \simeq i \, \text{Im}A$ Imaginary part of the "skewed" amplitude vs. that of non-diagonal "elastic" transition ...

Generalized parton distribution :

$$G_N(x,Q^2,ec{\Delta}) = G_N(x,Q^2)F_{2g}(\Delta)$$

G - the usual 1-parton distribution (determining DIS structure functions)

F - the two-gluon form factor of the nucleon

the dipole fit :

$$F_{2g}(\Delta) \simeq \frac{1}{\left(1 + \Delta^2/m_q^2\right)^2}$$

 $m_g^2(x \sim 0.03, Q^2 \sim 3 \text{GeV}^2)$ $\simeq 1.1 \text{GeV}^2$

If partons were *uncorrelated*, we would write

$$D(x_1, x_2, p_1^2, p_2^2, \vec{\Delta}) = G(x_1, p_1^2, \vec{\Delta})G(x_2, p_2^2, \vec{\Delta})$$

and use the dipole fit to get the estimate

$$\frac{D(x_1, x_2, -\overrightarrow{\Delta})D(x_3, x_4, \overrightarrow{\Delta})}{D(x_1)D(x_2)D(x_3)D(x_4)} \simeq F_{2g}^4(\Delta)$$

The "interaction area" :

Another mechanism : 2 partons from a short-range PT correlation No Δ -dependence from the upper side ! $\longrightarrow \int \frac{d^2 \Delta}{(2\pi)^2} F_g^2(\Delta^2) = \frac{m_g^2}{12\pi}$

3-> 4 contribution vs. 4-> 4 is enhanced by a factor

$$2 \times \frac{7}{3} \simeq 5$$

Results of quantitative analysis to appear in PRL (2012)

At TEVATRON energies, the $3 \rightarrow 4$ contribution amounts to

about 15-20% of the 4->4 :

the ratio of 3->4 to 4->4 contributions to the "total" Xsection

Uncertainty due to choice of the Q_0 parameter ! **IMPORTANT** ! there is no contradiction. Q_0 is not a formal parameter but a physical one: The parton resolution scale at which $F_g^2(\Delta^2)$ has no PT tail $1/\Delta^2$!

2 -> 4 processes

What if *both parton pairs* originate from PT splittings? No Δ – dependence whatsoever. The integral diverges...?..

This is **NOT** an amplitude of a 4-parton collision but a one-loop correction to the 2-parton collision

4-parton interaction is a "higher twist" effect

hard 2-parton scattering :

plus two additional jets :

 $\frac{d\sigma^{(2\to4)}}{d\hat{t}_{\cdot}d\hat{t}_{\circ}} \propto \frac{\alpha_s^4}{Q^6}$ 4 jets from 4-parton scattering : $\frac{d\sigma^{(4\to4)}}{d\hat{t}_1 d\hat{t}_2} \propto R^{-2} \cdot \left(\frac{\alpha_s^2}{O^4}\right)^2 \propto \frac{\alpha_s^4}{R^2 O^8}$

 $\frac{d\sigma^{(2\to2)}}{d\hat{t}} \propto \frac{\alpha_s^2}{O^4}$

 m_g^2

Always a small contribution to the total 4-jet production cross section

End of story?... Not at all

What distinguishes "double hard collisions" is the differential jet spectrum

back-to-back kinematics

Both these regimes are present in differential imbalance distributions due to Multi-Parton Interactions

reminder :

Drell-Yan process

Massive lepton pair production cross section

$$\frac{d\sigma}{dq^2 dq_{\perp}^2} = \frac{d\sigma_{\text{tot}}}{dq^2} \quad \times \frac{\partial}{\partial q_{\perp}^2} \left\{ D_a^q \left(x_1, q_{\perp}^2 \right) D_b^q \left(x_2, q_{\perp}^2 \right) S_q^2 \left(q^2, q_{\perp}^2 \right) \right\}$$

Quark form factor:
$$S_q(Q^2, \kappa^2) = \exp\left\{-\int_{\kappa^2}^{Q^2} \frac{dk^2}{k^2} \frac{\alpha_s(k^2)}{2\pi} \int_0^{1-k/Q} dz P_q^q(z)\right\}$$

Gluon form factor:
$$S_g(Q^2, \kappa^2) = \exp\left\{-\int_{\kappa^2}^{Q^2} \frac{dk^2}{k^2} \frac{\alpha_s(k^2)}{2\pi} \int_0^{1-k/Q} dz \left[zP_g^g(z) + n_f P_g^q(z)\right]\right\}$$

Parton splitting probabilities

$$\begin{aligned} P_q^q(z) &= C_F \frac{1+z^2}{1-z}, \qquad P_q^g(z) = P_q^q(1-z), \\ P_g^q(z) &= T_R \big[z^2 + (1-z)^2 \big], \qquad P_g^g(z) = C_A \frac{1+z^4 + (1-z)^4}{z(1-z)} \end{aligned}$$

4-jet diff. spectrum

Generalization of the DDT-formula for back-to-back 4-jet production spectrum

$$\pi^{2} \frac{d\sigma^{(4 \to 4)}}{d^{2} \delta_{13} d^{2} \delta_{24}} = \frac{d\sigma_{\text{part}}}{d\hat{t}_{1} d\hat{t}_{2}} \cdot \frac{\partial}{\partial \delta_{13}^{2}} \frac{\partial}{\partial \delta_{24}^{2}} \left\{ {}_{[2]} D_{a}^{1,2}(x_{1}, x_{2}; \delta_{13}^{2}, \delta_{24}^{2}) \times {}_{[2]} D_{b}^{3,4}(x_{3}, x_{4}; \delta_{13}^{2}, \delta_{24}^{2}) \right. \\ \times S_{1} \left(Q^{2}, \delta_{13}^{2} \right) S_{3} \left(Q^{2}, \delta_{13}^{2} \right) \times S_{2} \left(Q^{2}, \delta_{24}^{2} \right) S_{4} \left(Q^{2}, \delta_{24}^{2} \right) \right\}$$

Not forgetting the Δ —integration and short-range correlations :

$$[2] D_a \times [2] D_b + [2] D_a \times [1] D_b + [1] D_a \times [2] D_b$$

Parton Entanglement in 3->4 interactions ?

Single Perturbative Splitting Diagrams in Double Parton Scattering Jonathan R. Gaunt <u>arXiv:1207.0480</u> [hep-ph]

- $_2$ GPD \neq GPD imes GPD \qquad a factorized model too naive
- Correct? Yes. Important? Not sure.

Things to sort out :

- to develop physical picture of entanglement
- to look for sources of potential suppression "crosstalk interactions are suppressed by colour effects..." (wrong)
- Otherwise, an object too complex, too new... Ain't nice

punchline

- Multi-parton collisions contribute substantially to 4 jet production in the back-to-back kinematics
- 4->4 and 3->4 parton subprocesses are both enhanced in the back-to-back region, while "double perturbative parton splittings" generate effectively 2->4, which is not
 - To describe multi-parton collisions one has to introduce and explore a new object
 Generalized Double-Parton Distributions

 $[2] D_h^{a,b}(x_1, x_2; q_1^2, q_2^2; \vec{\Delta})$

the parameter $\vec{\Delta}$ encodes the information about the impact-parameter-space correlation between the two partons from one hadron

- experimentally observed enhancement of a 4-jet cross section indicates the presence of short range two-parton correlations in the nucleon parton wave function, as determined by the range of integral over $\vec{\Delta}$
- A model of partons uncorrelated at scale of about 0.5 GeV², supplied with PT evolution (``3->4" processes), is capable of explaining Tevatron MPI findings
- I'd rather experimental studies employed QCD-motivated jet finding algorithms and concentrated on correlations in transverse momenta rather than angles

Where and how to look for 4-parton interactions