STUDIES OF MULTI-PARTON INTERACTIONS AT DØ **Dmitry Bandurin** Florida State University MPI at TAU October 16, 2012, Tel Aviv University #### Outline - Study of Underlying Events with low pT tracks - Study of Multiple Parton Interactions using photon+n-jet events - Fraction of the events with Double Parton interactions - Effective cross-section measurement - Comparison/tuning to MPI models - Summary ### Track angular correlations in minbias events - lacktriangle Use correlations in $\Delta \varphi$ to characterize Minimum Bias Events - Compare data to various Monte Carlo tunes and models **Strategy:** Associate all tracks to PVs and then select good quality tracks associated to minbias PVs. Minimize fakes, cosmics, conversions, long-lived resonances, vertex mis-associations - Trigger on dimuon events - Require exactly 2 muons w/ p_T > 2 GeV associated with the main primary vertex (PV) (not considered in the analysis) - Then require one or more Minimum Bias PVs - At least 5 tracks - At least 0.5cm from triggered PV - Within 20cm of center of detector - pT > 0.5 GeV, $|\eta| < 2$ - Choose track with max pT for each MB PV as a reference point #### Comparison to MPI models $$(N^{T} - N^{T}_{min})/\Sigma_{\phi}(N^{T} - N^{T}_{min})$$ N^T - total number of tracks in a bin N^T - combinatorial background - Combinatorial (flat) background is subtracted - Due to subtraction and normalization, dependence on tracking efficiency, background becomes negligible. - Almost same distribution at reconstruction (detector) and particle levelvery small acceptance corrections - The peak at π (recoil) is softer by construction and wider to keep pT balance - The height of peaks depend on track rapidity: only a fraction of the recoil tracks are in the same $|\eta|$ range. When the η range is extended, more tracks from the recoil side are included in the measurement, enhancing the peak at π . #### Comparison to MPI models $$(N_{\text{same}}^{T} - N_{\text{opp}}^{T})/\sum_{\Phi}(N_{\text{same}}^{T} - N_{\text{opp}}^{T})$$ $N_{\text{same (opp)}}^{T}$ - total number of tracks with same (opposite) η sign as the leading track - Study of correlations in rapidity in addition to the azimuthal angle - Distribution has a rather broad and high same side peak, and a flatter tail closer to π with $N^{\text{T}}_{\text{same}} \approx N^{\text{T}}_{\text{opp}}$ - After subtraction, peak is lower with $|\eta|$ <2 # Double Parton Interactions in $\gamma+3$ (and 2) jet events: from low pT to high pT in MPI studies - New motivations and prospects - New effects #### **Motivations** - Most of the processes that cause MPI production are non-perturbative and implemented in some phenomenological models of a hadron structure and parton-to-hadron fragmentation. - => Being phenomenological, the models strongly need experimental inputs. - The provided experimental inputs have been based so far mainly on the minbias Tevatron (0.63, 1.8, 1.96 TeV), SPS (0.2, 0.54, 0.9 TeV), Tevatron DY and similar LHC data. - However, there is a quite small amount of tests of MPI events in high pT regime, specifically with events having jet pT > 15 GeV, - => i.e. right in the region used in many measurements (e.g. top-quark mass) and most important for searches of rare processes, especially with multi-jet final state. - => MPI events can mimic a signature of a new physics processes and thus be a significant background to them. - => in the energy regime of pQCD # Double Parton events as a background to Higgs production Signal $$\sigma_{DP} = \frac{\sigma_A \sigma_B}{\sigma_{eff}}$$ Double Parton background Estimates for Tevatron JHEP 1104:054(2011), LHC PRD61,077502(2000), PRD81,014014(2010) - Many Higgs production channels can be mimicked by Double Parton events! - Some of them can be significant even after signal selections. - Dedicated cuts are required to increase sensitivity to the Higgs signal (same is true for many other rare processes)! #### Double parton and effective cross sections $$\sigma_{DP} = \frac{\sigma_A \sigma_B}{\sigma_{eff}}$$ ``` σ_{DP} -double parton cross section for processes A and B σ_{eff} - factor characterizing a size of effective interaction region ``` \rightarrow can be directly related to the spatial distribution of partons f(b). Uniform: σ_{eff} is large and σ_{DP} is small Clumpy: σ_{eff} is small and σ_{DP} is large => Having σ_{eff} measured we can estimate f(b) → Should be measured in experiment !! Just 4 measurements existed up to recent time : AFS,UA2, 2 CDF [Run 1] #### History of the measurements | Experiment | $\sqrt{s} \; (\mathrm{GeV})$ | Final state | p_T^{min} (GeV) | η range | $\sigma_{ m eff}$ | |-------------------------|------------------------------|---------------------------|--------------------------------------|-----------------------------------|----------------------------------------------------------------------| | AFS (pp) , 1986 | 63 | 4 jets | $p_{\mathrm{T}}^{\mathrm{jet}} > 4$ | $ \eta^{ m jet} < 1$ | $\sim 5~\mathrm{mb}$ | | UA2 $(p\bar{p})$, 1991 | 630 | 4 jets | $p_{\mathrm{T}}^{\mathrm{jet}} > 15$ | $ \eta^{ m jet} < 2$ | > 8.3 mb (95% C.L.) | | CDF $(p\bar{p})$, 1993 | 1800 | 4 jets | $p_{\mathrm{T}}^{\mathrm{jet}} > 25$ | $ \eta^{ m jet} < 3.5$ | $12.1^{+10.7}_{-5.4}$ mb | | CDF $(p\bar{p}), 1997$ | 1800 | $\gamma + 3 \text{ jets}$ | $p_{\mathrm{T}}^{\mathrm{jet}} > 6$ | $ \eta^{ m jet} < 3.5$ | | | | | | $p_{\mathrm{T}}^{\gamma} > 16$ | $ \eta^{\gamma} < 0.9$ | $14.5 \pm 1.7^{+1.7}_{-2.3} \text{ mb}$ | | DØ $(p\bar{p}), 2010$ | 1960 | $\gamma + 3 \text{ jets}$ | $60 < p_T^{\gamma} < 80$ | $ \eta^{\gamma} < 1.0 \mid \mid$ | | | | | | | $1.5 < \eta^{\gamma} < 2.5$ | | | | | | | $ \eta^{jet} < 3.0$ | $\sigma_{eff} = 16.4 \pm 0.3 \text{(stat)} \pm 2.3 \text{(syst) mb}$ | #### AFS'86, UA2'91 and CDF'93 4-jet samples, motivated by a large dijet cross section (but low DP fractions) #### CDF'97, D0'10 γ +3jets events, data-driven method: use rates of Double Interaction events (two separate ppbar collisions) and Double Parton (single ppbar collision) events to extract σ_{eff} from their ratio. => reduces dependence on Monte-Carlo and NLO QCD theory predictions. #### Motivation for jet pT binning Jet PT: jet from dijets vs. radiation jet from γ +jet events ► Jet pT from dijets falls much faster than that for a radiation jet, i.e. Fraction of dijet (Double Parton) events should drop with increasing jet pT => Measurement is done in three bins of 2nd jet pT: 15-20, 20-25, 25-30 GeV #### Discriminating variables ▶ Main one is $\Delta \phi$ angle between two best pT-balancing pairs $$\Delta S = \Delta \phi(p_T^{\gamma, \, \text{jet}}, p_T^{\text{jet}_i, \, \text{jet}_k})$$ For " $\gamma+3$ -jet" events from Single Parton scattering we expect ΔS to peak at π , while it should be flat for "ideal" Double Parton interaction (2nd and 3rd jets are both from dijet production) due to a pairwise pT balance. #### Double Parton interaction model #### Built from D0 data. Samples: **A**: photon $+ \ge 1$ jet from γ +jets data events: - 1 VTX events - photon pT: 60-80 GeV - leading jet pT>25 GeV, $|\eta|$ <3.0. **MixDP** - **B**: ≥1 jets from MinBias events: - 1 VTX events - jets with pT's recalculated to the primary vertex of sample A have pT>15 GeV and $|\eta|$ <3.0. - ► A & B samples have been (randomly) mixed with jets pT re-ordering - ► Events should satisfy photon+≥3 jets requirement. - ► △R(photon, jet1, jet2, jet3)>0.7 ⇒ Two scatterings are independent by construction! #### The fraction of DP events: the two datasets method Since dijet pT cross section drops faster than that of radiation jets the different DP fractions in various (2nd) jet pT intervals are expected. The larger 2nd jet pT the smaller DP fraction. Dataset 1 - "DP-rich", smaller 2nd jet pT bin, e.g. 15-20 GeV Dataset 2 - "DP-poor", larger 2nd jet pT bin, e.g. 20-25 GeV Each distribution can be expressed as a sum of DP and SP: $$D_1 = f_1 M_1 + (1 - f_1) B_1$$ $$D_2 = f_2 M_2 + (1 - f_2) B_2$$ $$D_1 - f_1 M_1 = (1 - f_1) B_1$$ $$D_2 - f_2 M_2 = (1 - f_2) B_2$$ $D_1 - \lambda K D_2 = f_1 M_1 - \lambda K C f_1 M_2$ where $\lambda = \frac{B_1}{B_2} K = \frac{(1 - f_1)}{(1 - f_2)} C = \frac{f_2}{f}$ D_i - data distribution M_i - MIXDP distribution B_i - background distribution f_{i} - fraction of DP events $(1-f_{i})$ - fraction of SP events From SP MC $$\lambda = \frac{B_1}{B_2} \quad K = \frac{(1-f_1)}{(1-f_2)}$$ From MixDP $$C = \frac{f_2}{f_1}$$ f1 is the only unknown --> get from minimization #### The two datasets method Data and DP model for the DP fractions Dataset 1: 2nd jet pT: 15-20 GeV Dataset 2: 2nd jet pT: 20-25 GeV - ✓ Fraction of Double Parton in bin 15-20 GeV (f1) is the only unknown - → get from minimization. Good agreement of the △S Single Parton distribution extracted in data and in MC (see previous slide) → another confirmation for the found DP fractions. #### Fractions of Double Parton γ +3-jet events Found DP fractions are pretty sizable: they drop from \sim 46-48% at 2nd jet pT 15-20 GeV to \sim 22-23% at 2nd jet 25-30 GeV with relative uncertainties \sim 7-12%. CDF Run I: 53±3% at 5-7 GeV of uncorr. jet pT. # Fractions of Double Parton events: MPI models and D0 data - Pythia MPI tunes A and S0 are considered. - Data are in between the model predictions. #### Calculation of σ_{eff} Phys.Rev.D81,052012(2010) - σeff values in different jet pT bins agree with each other within their uncertainties (also compatible with a slow decrease with pT). - Uncertainties have very small correlations between 2nd jet pT bins. - One can calculate the averaged (weighted by uncertainties) values over the pT bins: $$\sigma_{eff}^{ave} = 16.4 \pm 0.3 (stat) \pm 2.3 (syst) mb$$ CDF Run I: $14.5 \pm 1.7^{+1.7}_{-2.3}$ mb #### Main systematic and statistical uncertainties (in %) for σ eff. | $p_T^{ m jet2}$ | Sy | ystema | atic uncer | tainty s | sources | $\delta_{ m syst}$ | $\delta_{ m stat}$ | $\delta_{ m total}$ | |-----------------|-------------|-------------|---------------------------------------|----------|------------------------|--------------------|--------------------|---------------------| | (GeV) | $f_{ m DP}$ | $f_{ m DI}$ | $arepsilon_{ m DP}/arepsilon_{ m DI}$ | JES | $R_c \sigma_{ m hard}$ | (%) | (%) | (%) | | 15 - 20 | 7.9 | 17.1 | 5.6 | 5.5 | 2.0 | 20.5 | 3.1 | 20.7 | | 20 - 25 | 6.0 | 20.9 | 6.2 | 2.0 | 2.0 | 22.8 | 2.5 | 22.9 | | 25 - 30 | 10.9 | 29.4 | 6.5 | 3.0 | 2.0 | 32.2 | 2.7 | 32.3 | # Models of parton spatial density and σ_{eff} - σ_{eff} is directly related with parameters of models of parton spatial density - Three models have been considered: Solid sphere, Gaussian and Exponential. TABLE VI: Parameters of parton spatial density models calculated from measured σ_{eff} . | Model for density | $\rho(r)$ | $\sigma_{ ext{eff}}$ | $R_{\rm rms}$ | Parameter (fm) | $R_{\rm rms}$ (fm) | |-------------------|---------------------|----------------------|-----------------|-----------------|--------------------| | Solid Sphere | Constant, $r < r_p$ | $4\pi r_p^2/2.2$ | $\sqrt{3/5}r_p$ | 0.53 ± 0.06 | 0.41 ± 0.05 | | Gaussian | $e^{-r^2/2a^2}$ | $8\pi a^2$ | $\sqrt{3}a$ | 0.26 ± 0.03 | 0.44 ± 0.05 | | Exponential | $e^{-r/b}$ | $28\pi b^2$ | $\sqrt{12}b$ | 0.14 ± 0.02 | 0.47 ± 0.06 | - The rms-radii above are calculated w/o account of possible parton spatial correlations. For example, for the Gaussian model one can write [Trelelani, Galucci, 0901.3089,hep-ph]: $$\frac{1}{\sigma_{eff}} = \frac{3}{8\pi R_{rms}^2} (1 + Corr.)$$ - If we have rms-radii from some other source, one can estimate the size of the spatial correlations (larger corr. \leftrightarrow larger rms-radius with a fixed σ_{eff}) ### Experimental results on σ_{eff} from Atlas talk at MPI workshop, DESY, 2011 - => No clear energy dependence so far... - => More measurements are needed! #### Angular decorrelations in $\gamma+2$ and $\gamma+3$ jet events Phys.Rev.D83, 052008 (2011) #### **Motivations:** - \triangleright By measuring **differential** cross sections vs. the azimuthal angles in γ +3(2) jet events we can better tune (or even exclude some) MPI models in events with high pT jets. - > Differentiation in jet pT increases sensitivity to the models even further. Four normalized differential cross sections are measured: - $\Delta \phi (\gamma + \text{jet1}, \text{jet2})$ in 3 bins of 2nd jet pT: 15-20, 20-25 and 25-30 GeV - $\Delta S(\gamma + \text{jet1}, \text{jet2+jet3})$ for 2nd jet pT 15-30 GeV (larger for stat. reasons but still has good sensitivity to MPI models) ### \triangle S and $\Delta \varphi$ cross sections - MPI models substantially differ from any SP (=single parton scattering) prediction. - Large difference between SP models and data confirms presence of DP events in data. - MPI models differ noticeably, especially at small angles - => we can tune the models or just choose the best one(s) - Data are close to Perugia (P0), S0 and Sherpa MPI tunes. N.B.: the conclusion is valid for both the considered variables and 3 jet pT intervals! 22 #### $\Delta \varphi$ cross sections TABLE V: The results of a χ^2 test of the agreement between data points and theory predictions for the ΔS ($\gamma + 3$ jet) and $\Delta \phi$ ($\gamma + 2$ jet) distributions for $0.0 \le \Delta S(\Delta \phi) \le \pi$ rad. Values are χ^2/ndf . | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | Variable | p_T^{jet2} | SP m | odel | | | | | MI | PI mod | lel | | | | |-------------------------------------------------------------------------|---------------|---------------------|--------|----------------|------|------------------|-----|-----|--------|--------|--------|-----|-----|----------------| | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | (GeV) | PYTHIA | ${\rm SHERPA}$ | A | $_{\mathrm{DW}}$ | S0 | P0 | P-nocr | P-soft | P-hard | P-6 | P-X | ${\rm SHERPA}$ | | $\Delta \phi$ 20 - 25 10.2 5.9 4.0 7.9 1.1 0.9 1.4 2.1 1.1 1.3 1.5 0.4 | ΔS | 15 - 30 | 7.7 | 6.0 | 15.6 | 21.4 | 2.2 | 0.4 | 0.5 | 2.9 | 0.5 | 0.4 | 0.5 | 1.9 | | | $\Delta \phi$ | 15 - 20 | 16.6 | 11.7 | 19.6 | 27.7 | 1.6 | 0.5 | 0.9 | 1.6 | 0.9 | 0.6 | 0.8 | 1.2 | | $\Delta \phi = 25 - 30$ 7.2 3.5 2.8 3.0 2.4 1.1 1.1 3.7 0.2 1.3 1.9 0.7 | $\Delta \phi$ | 20 - 25 | 10.2 | 5.9 | 4.0 | 7.9 | 1.1 | 0.9 | 1.4 | 2.1 | 1.1 | 1.3 | 1.5 | 0.4 | | , , , , , , , , , , , , , , , , , , , , | $\Delta \phi$ | 25 - 30 | 7.2 | 3.5 | 2.8 | 3.0 | 2.4 | 1.1 | 1.1 | 3.7 | 0.2 | 1.3 | 1.9 | 0.7 | ### DP fractions in γ +2 jet events - In $\gamma+2$ jet events in which 2^{nd} jet is produced in the 2nd parton interaction, $\Delta \varphi(\gamma+\text{jet1},\text{jet2})$ distribution should be flat. - Using this fact and also SP prediction for $\Delta \phi(\gamma + \text{jet1}, \text{jet2})$ one can get DP fraction from a maximal likelihood fit to data. # Example of the fit for 2nd jet pT bin 15 – 20 GeV #### DP fractions for in $\gamma+2$ jet events | $p_T^{ m jet 2}$ | $\langle p_T^{ m jet2} angle$ | $f_{ m dp}^{\gamma 2j}$ | Unce | rtaint | ies (in %) | |------------------|--------------------------------|-------------------------|------|----------------|------------| | (GeV) | (GeV) | (%) | Fit | δ_{tot} | SP model | | 15 - 20 | 17.6 | 11.6 ± 1.0 | 5.2 | 8.3 | 6.7 | | 20 - 25 | 22.3 | 5.0 ± 1.2 | 4.0 | 20.3 | 11.0 | | 25 - 30 | 27.3 | 2.2 ± 0.8 | 27.8 | 21.0 | 17.9 | CDF Run I: 14^{+8}_{-7} % at jet pT > 8 GeV and photon pT > 16 GeV # DP fractions in $\gamma+2$ jet events vs. $\Delta \varphi$ - DP fractions should depend on $\Delta \phi(\gamma + \text{jet1}, \text{jet2})$: the smaller $\Delta \phi$ angle the larger DP fraction (see, for example, plot on the previous slide). - We can find this dependence by repeating the same fits at smaller $\Delta \varphi$ angles. DP fractions vs $\Delta \varphi$ bin for 3 bins of 2^{nd} jet pT => DP fractions are larger at smaller angles and smaller 2nd jet pT #### TP fractions γ +3jet final state also can be produced by Tripple Parton interaction (TP). In γ +3jet TP events all 3 jets should stem from 3 different parton scatterings. To estimate the TP fraction we used results on DP+TP fractions and fractions of Type I(II) events found in our previous measurement. TP in γ +3jet data is calculated as: $$f_{tp}^{\gamma 3j} = f_{dp+tp}^{tp} \cdot f_{dp+tp}^{\gamma 3j}$$ The fraction of TP in MixDP can be found as: $$f_{dp+tp}^{tp} = F_{typeII} \cdot f_{dp}^{\gamma 2j} + F_{typeI} \cdot f_{dp}^{jj}$$ $$f_{dp+tp}^{\gamma 3 \mathrm{j}}$$ - measured in previous DP analysis; $$f_{dp}^{jj}$$ - estimated using dijet cross section; $$f_{dp}^{\gamma 2 \mathrm{j}}$$ - measured; $F_{typeI(II)}$ - found from the model (MixDP). Probability to produce another parton scattering is proportional to $R = \sigma_{ij}/\sigma_{eff}$, ratio $f_{to}^{\gamma 3j}/f_{do}^{\gamma 3j}$ should be proportional to R. Types in MixDP model #### TP fractions | $p_T^{ m jet2} \; ({ m GeV}) \ ({ m GeV})$ | $f_{ m tp}^{\gamma 3j} \ (\%)$ | $f_{\rm tp}^{\gamma 3j}/f_{\rm dp}^{\gamma 3j}$ (%) | |--------------------------------------------|--------------------------------|-----------------------------------------------------| | 15 - 20 | 5.5 ± 1.1 | 13.5 ± 3.0 | | 20 - 25 | 2.1 ± 0.6 | 6.6 ± 2.0 | | 25 - 30 | 0.9 ± 0.3 | 3.8 ± 1.4 | | | _ | - | #### Summary - > In D0 we have been studying DP production events and measured recently: - Fraction of DP events in $\gamma+3$ -jet events in three pT bins of 2nd jet : 15-20, 20-25, 25-30 GeV. It varies from ~47% at 15-20 GeV to ~23% at 25-30 GeV - Effective cross section (process-independent, defines rate of DP events) σ_{eff} in the same jet pT bins with average value: $$\sigma_{eff}^{ave} = 16.4 \pm 0.3 (stat) \pm 2.3 (syst) mb$$ - The DP in γ+2jets: 11.6% at 15-20 GeV to 2.2% at 25-30 GeV. - The TP fractions in $\gamma+3$ -jet events are determined for the firs time. As a function of 2nd jet pT, they drop from ~5.5% at 15-20 GeV, to ~0.9% at 25-30 GeV. - The \triangle S and $\Delta \varphi$ cross sections. They allow to better tune MPI models: Data prefer the Sherpa and Pythia MPI models (P0, P0-X, P0-hard) with pT-ordered showers. - DP production can be a significant background to many rare processes, especially with multi-jet final state. A set of variables allowing to reduce the DP background is suggested. # **BACK-UP SLIDES** # Parton spatial density and σ_{eff} Double parton cross section $$\sigma_{\rm dp} = \sum_{q/g} \int \frac{\sigma_{12}\sigma_{34}}{2\sigma_{\rm eff}} D_p(x_1, x_3) D_{\bar{p}}(x_2, x_4) dx_1 dx_2 dx_3 dx_4$$ Double parton scattering Effective cross section σ_{eff} is directly related with parton spatial density: $$\sigma_{eff}^{-1} = \int d^2\beta \big[F(\beta)\big]^2, \quad \beta \text{ is impact parameter}$$ $$F(\beta) = \int f(b)f(b-\beta)d^2b,$$ where f(b) is the density of partons in transverse space. => Having σ_{eff} measured we can estimate f(b) #### Double parton interactions and dPDF evolution From Phys.Rev.D81,065014(2010)(arXiv:1001.0104) as an interpretation of the D0 measurement • If at any given scale μ_0 : $D(x1,x2,\mu_0) = D(x1,\mu_0)*D(x2,\mu_0) \theta(1-x1-x2)$ the dPDF evolution violates this factorization inevitably at any different scale $\mu \neq \mu_0$: $D(x1,x2,\mu) = D(x1,\mu)*D(x2,\mu) + R(x1,x2,\mu)$, where $R(x1,x2,\mu)$ is a correlation term. FIG. 1: Effective cross section $\sigma_{\text{eff}}^{\text{exp}}$ measured in the three p_T^{jet2} bins at the D0 experiment [5]. The solid (k=0.5) and dashed (k=0.1) lines are the results from Eq. [11] at $p_{T0}^{\text{jet2}} = 22.5$ GeV and $\sigma_{\text{eff}}^{0} = 16.3$ mb. • Direct account of double PDFs: J.Gaunt and J.Stirling, JHEP 1003:005,2010. First software implemented evolution equations and solutions for dPDF To the large extent, being encouraged by the D0 measurement. #### **Motivations** Comparison of the top-quark mass offset corrections with a few MPI models Difference between the two sets of the models leads to about 0.5-1.0 GeV uncertainty to the offset corrections for the top-quark mass.