

PSB Upgrade

PSB DUMP DESIGN

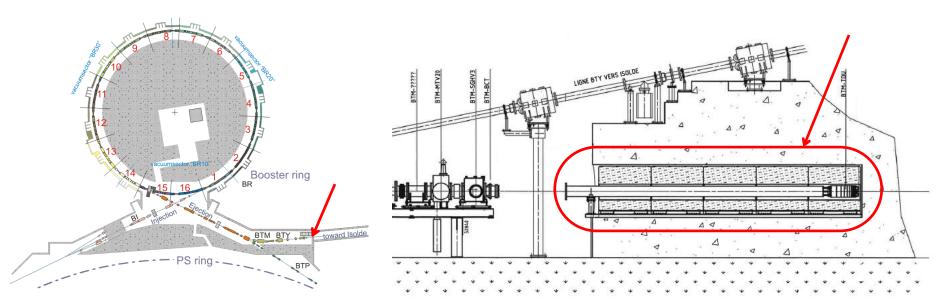
C. Maglioni, A. S. Martinez

Thanks to:

W. J. Zak, T. Antonakakis, A. P. Marcone, M. Calviani, A. Christov, V. Vlachoudis, F. Cerutti, R. Losito, F. Loprete

Outline

- Beam parameters
- Constraints, Considerations and Choices
- Design proposal
- MC and thermo-mechanical analyses
- Shielding and Ancillaries
- Conclusions and ongoing work
- Next steps


Beam Parameters

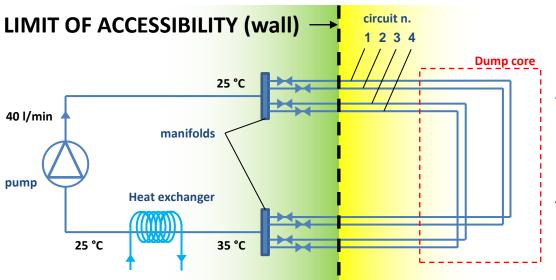
- **Design parameters:**
 - Max beam intensity: 1E14 p+/pulse
 - Beam energies: 1.4 & 2 GeV
 - Pulse length: 1.66 μs
 - Pulse period: 1.2 s (900ms not considered here)
 - Total Average beam power: 26.7 kW
 - Min beam size $(1\sigma, H \times V): 0.37 \times 0.71 \text{ cm}^2$
- Operational parameters:
 - beam dumped: 10% operation, 50% commissioning
 - Use: 24h/day, 11m/year, 30years
 - 100% of minimum beam size (conservative)
 - Max intensity: 33% operation, 100% commissioning

Constraints

- **Lifetime**: 30 years, ~7.6E8 cycles (commissioning + operation), 7.24E21 p⁺ at minimum beam size ($\equiv 2.7E22 \text{ p}^+/\text{cm}^2$)
- Installation: August 2013 at latest
- Location: same location as the old dump
- Space limitation: shielding removal, 5m-long 1m-dia cavity → use for dump core + cooling + new shielding

SAFETY FACTOR

Considerations and Choices

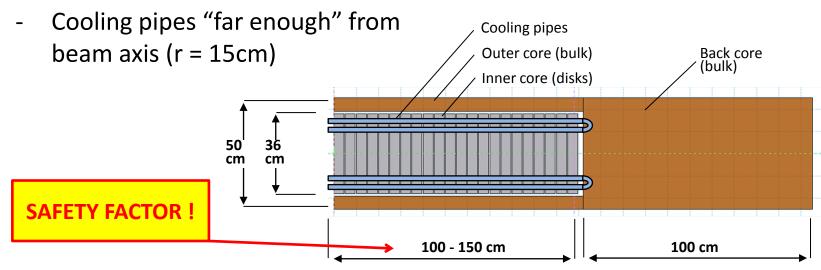

- Maximize Reliability:
 - → Implement simple design (no vacuum, no welding, simplify assembly, ease & speed-up manufacturing)
 - \rightarrow Minimize failure risk by maximizing safety margin
- Access restrictions (no easy for maintenance and min 4 months shutdown to eventually replace the dump):
 - → Implement a Ø (in-situ) maintenance design

Operation & Cooling:

- Operation of the dump is continuous, 26.7kW
- Active cooling is needed (thermal radiation + stagnant air not enough)
 SAFETY FACTOR !
- Forced air cooling is not possible → water cooling
 @ 22°C, min 40 l/min (min 60 l/min for 900ms RR)

- redundancy (4/6 independent circuits, survival with 1)
 - Limited erosion-corrosion in pipes with at least 2 active circuits (316L)
 - Avoid welds → use of long (>7m) bended pipes

PSB Upgrade

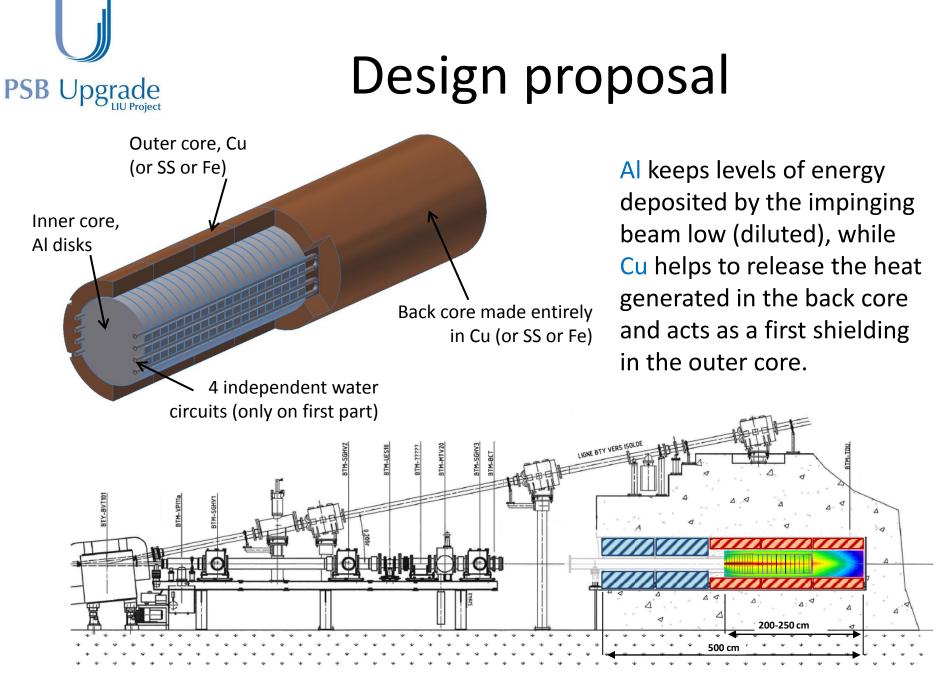


Considerations and Choices

- Core minimum dimensions:
 - → Minimum 140cm Cu-equivalent length to intercept all primary particles
 - \rightarrow Minimum 50cm-dia to intercept 5 σ of maximum beam size
- Layout:

6/14/2012

- Reduce stresses in the inner core: collection of several thick disks rather than a bulk block of material
- Reduce stresses in the pipes: prefer clamps over welds



Considerations and Choices

Materials:

- Avoid inert atmosphere
- Use of well known classic materials
- ↓-density & ↑-conductivity, relatively ↑-strength for inner core (absorber): (Ti, C), Al or Be
- ↑-density & ↓-activation for the outer core and back core: SS, Cu or Cobalt reduced-Fe
- Maximize long-term performance (↓-radiation damage, ↓-creep, ↑-corrosion resistance) and avoid Galvanic coupling
- \rightarrow Al + Cu is today baseline.
- → The proposal which follow is the results of many iterations between MC and thermo-mechanics.
- ightarrow All analyses at 2GeV, max intensity

Design proposal

Inner Core :

- Aluminum type A60xx (60, 61, 63) provides the best in terms of mechanical strength, thermal conductivity, corrosion and radiation resistance at the lowest cost (inner core = 6 kchf).
- \Phi k helps reducing the risk when reducing to 1 cooling pipe (T remain quite uniform)
- Be would provide a higher design safety margin, but very expensive (inner core = 150 kchf)
- Outer & Back Cores :
 - Cu and SS equivalent for RP. Cu helps release heat better, SS releases less pre-stress in time at 个T.
 - Cobalt reduced-Fe or SS are better for RP and may be a viable compromise (个-cost, to be studied...)

Design proposal

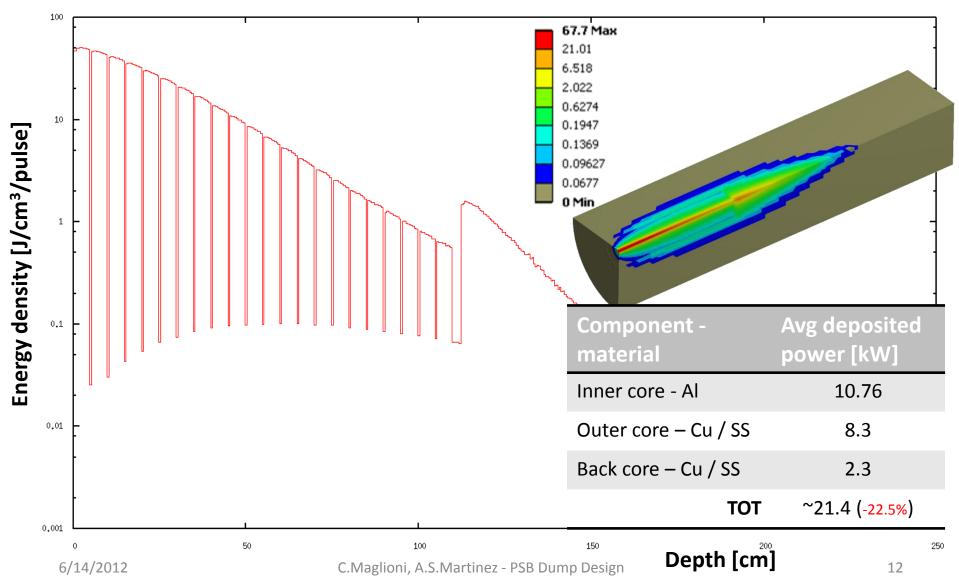
Property @ RT	unit	316L	A96061 T651*	C10700 H02*	↓Co-Fe ↓Co-SS	
Yield Str Y_T	MPa	250-300	253	300-400	-	
Elongation at break A%	%	40-50	8.9	15	-	A%
Young Modulus E	GPa	194	70	117-126	-	αΕ
Fatigue @1E7 cycles S_F	MPa	240	102	105	-	c _P Y
Max Service T _s - Indicative	С	800	170	300	-	Τs
Thermal Conductivity λ	W/m C	13	168	387	-	۱ _s
Specific Heat c _P	J/kg C	486	953	385	-	λ
Thermal expansion $oldsymbol{lpha}$	1/C	1.7E-5	2.4E-5	1.67E-5	-	

Possible \downarrow Co-Iron and Steels:

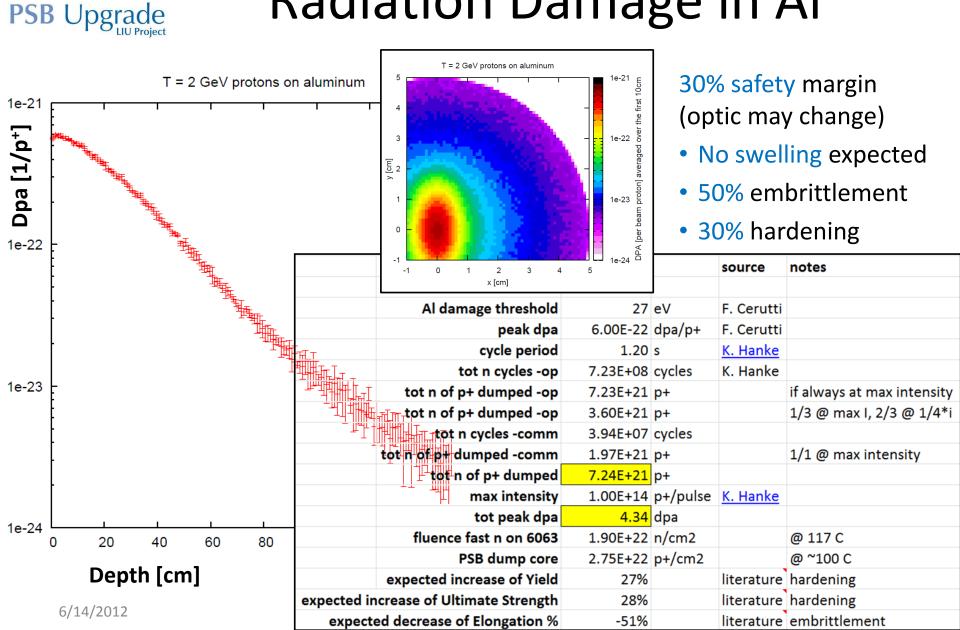
??cost??

- 316L(N)-IGX (iter grade, 个literature, data), EU?

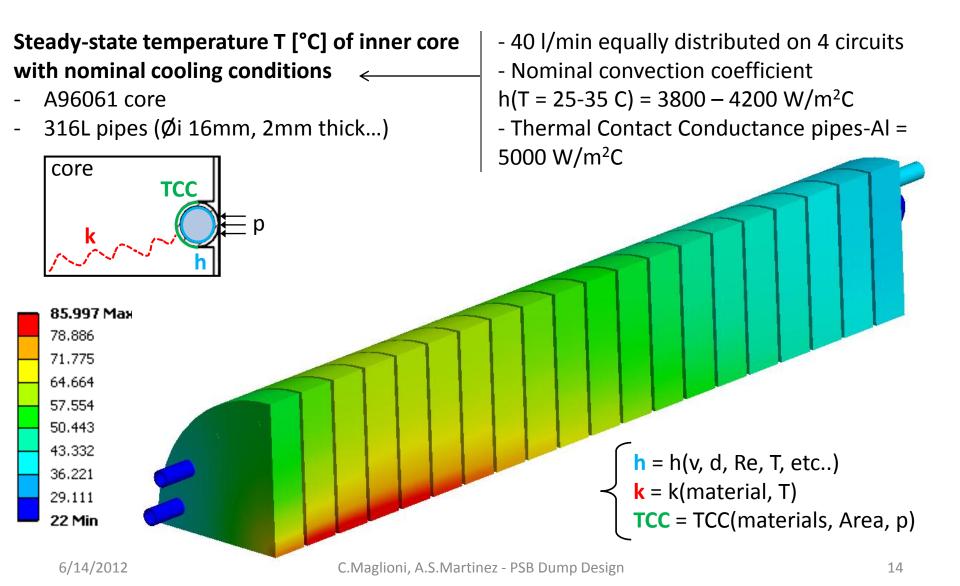
- AL 29-4C (UNS S44735) → USA


- 304L VIMVAR \rightarrow UK, USA

6/14/2012

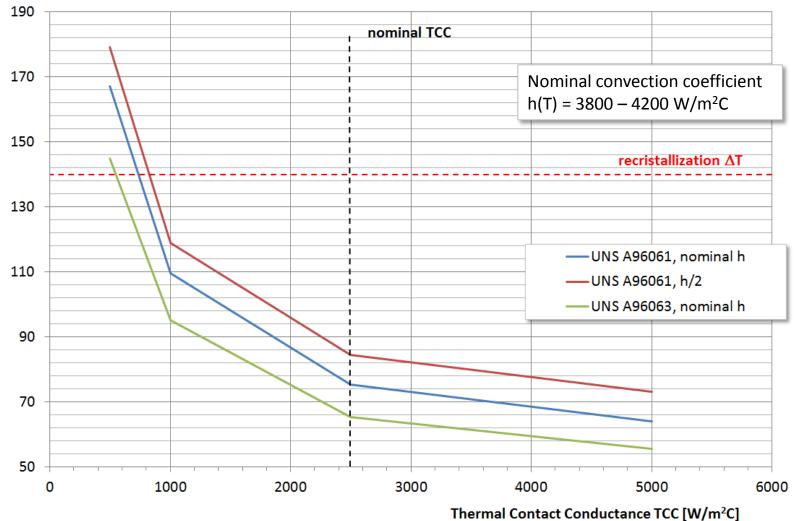

C.Maglioni, A.S.Martinez - PSB Dump Design

Monte Carlo Analyses

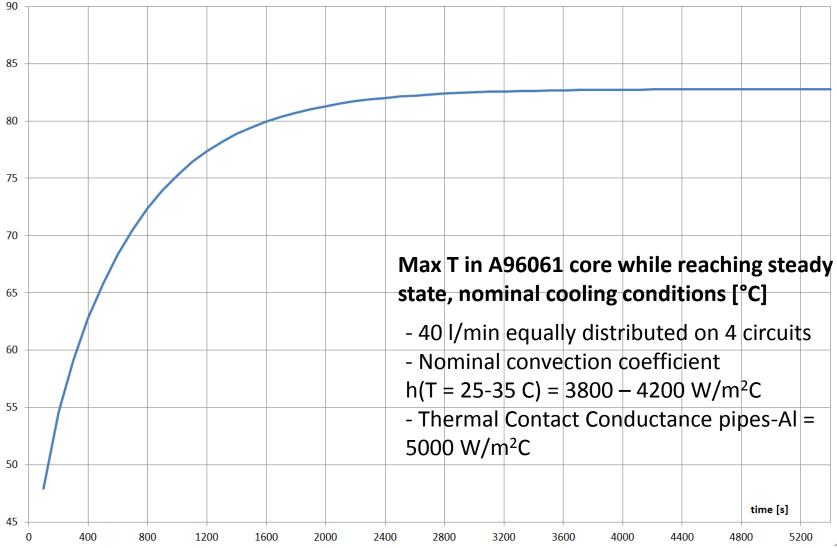


Radiation Damage in Al

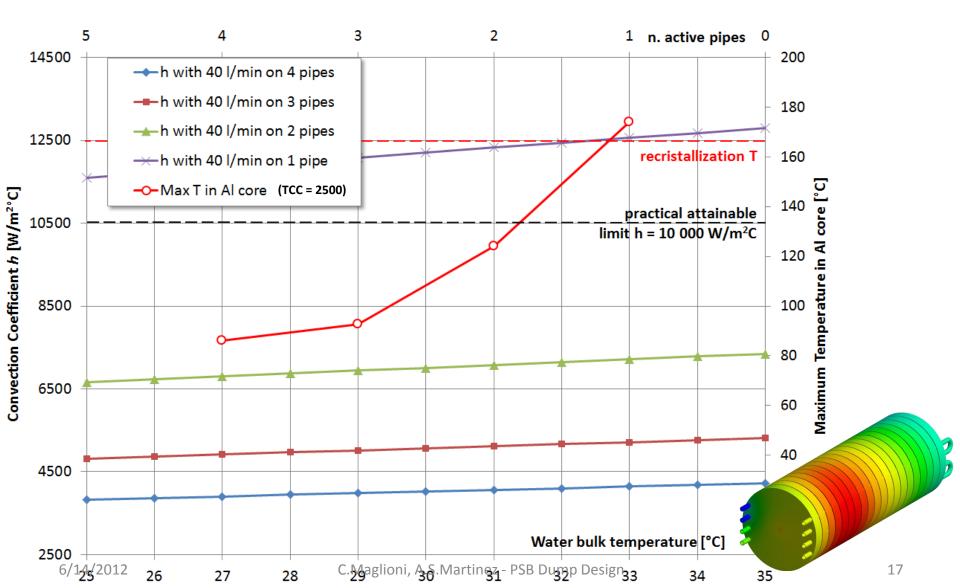
Thermal Steady Analyses

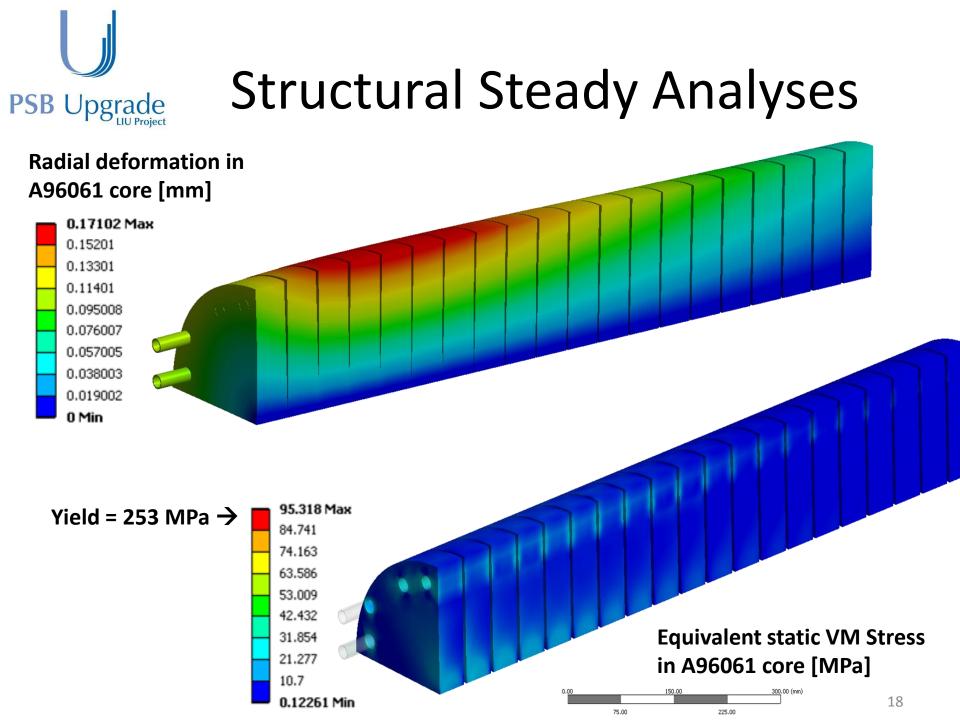


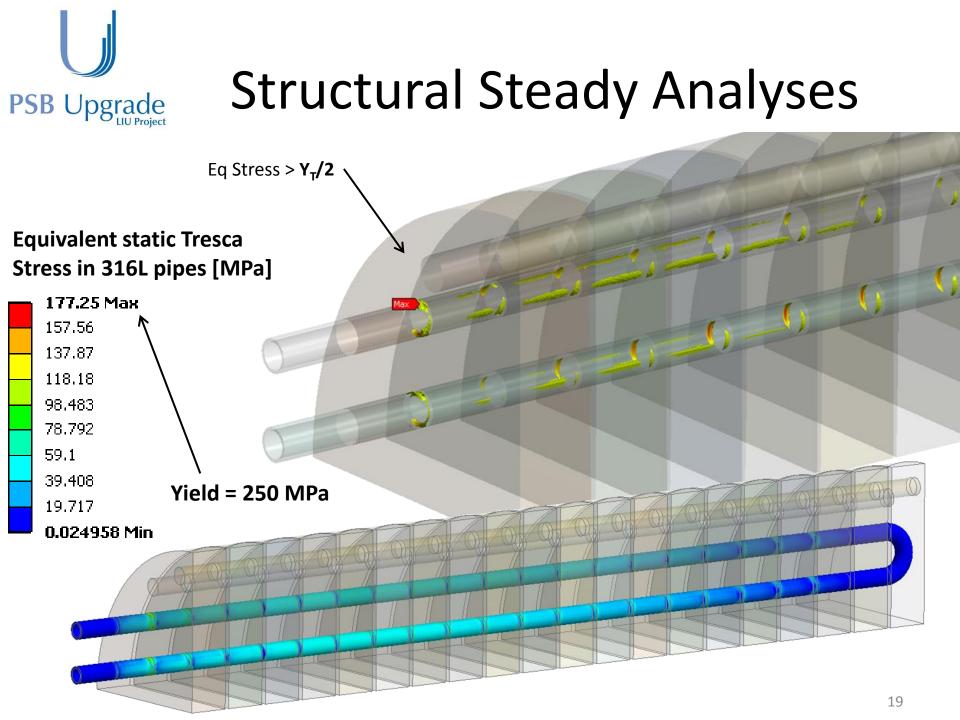
Thermal Steady Analyses


Max ΔT in A96061 core in steady-state [°C]

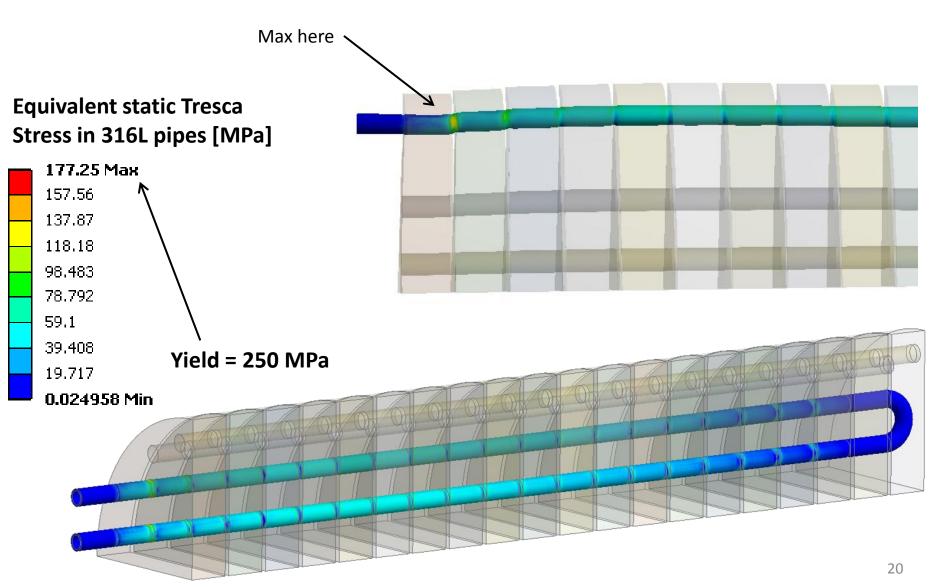
TCC is as important as **h** and **k**, but more difficult to get and to control


PSB Upgrade


Thermal Transient Analyses



...working with less pipes...





Structural Steady Analyses

C.Maglioni, A.S.Martinez - PSB Dump Design

Shielding and Ancillaries

Shielding:

- ~20% of energy escape the core. The design of the shielding is in progress by RP
- "Available to fill" 50 cm gap between the dump core and the wall
- Trolley to slide in shielding + core in design with DO
- Ancillaries:
 - Implementation of water leak containment
 - Implementation of endoscopy cavity for off-beam monitoring
- Cabling & Control:
 - Thermocouples for core on-line monitoring
 - T sensors and flow meter for the cooling circuit
 - Remote control for valves (manifold) of the cooling circuit

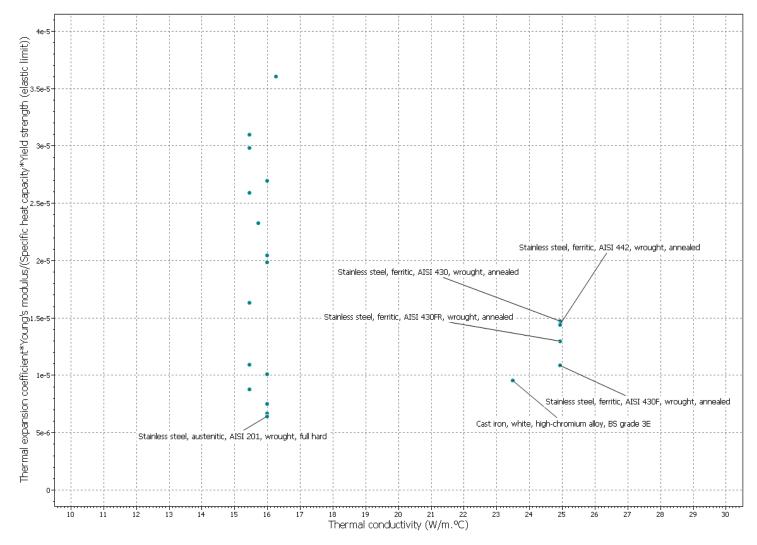
Conclusions & ongoing work

The design address considerable number of constraints :

- \rightarrow Beam and operational parameters
- \rightarrow Location, logistics
- \rightarrow Material and cooling
- \rightarrow Reliability, lifetime, space limitation, simplicity
- Ongoing verifications :
 - \rightarrow Static Structural analysis with 3,2,and 1 pipe only
 - \rightarrow Fine thermo-mechanical analysis of back & outer cores
 - \rightarrow Dynamic Structural analysis + fatigue life assessment of Al core
 - \rightarrow Assessment of variability of k with radiation damage
 - \rightarrow Pipe connection detailed development
 - \rightarrow Choice of (long) pipe supplier

Next steps

- Final choice of materials and study ↓-Co steel option
 < 01/07/12
- Design of core/pipe connection < 01/08/12
- Iterations MC/thermo-mechanics (simulations) IP
 optimization of design (energy deposition, escaping particles and thermal stresses) < end summer '12
- dump eng specification < end summer '12 (but > func spec!)
- Final global design: beam dump core + shielding (from RP)
 < end summer '12
- ALARA and dismantling/assembly procedure < 01/12/12
- Look into 900ms option ?



PSB Upgrade

Thanks

Design proposal

Design proposal

	Stainless steel, ferritic, AISI 430F, wrought, annealed	Stainless steel, ferritic, AISI 430, wrought, annealed	Stainless steel, ferritic, AISI 430FR, wrought, annealed	Stainless steel, ferritic, AISI 442, wrought, annealed	Cast iron, white, high- chromium alloy, BS grade 3E	Stainless steel, austenitic, AISI 201, wrought, full hard				
Computed Properties										
Thermal expansion coefficient*Young's modulus/ (Specific heat capacity*Yield strength (elastic limit))	0.0000109	0.0000148 👚	0.000013 🕇	0.0000144 👚	0.0000961 👃	0.0000646 👃				
General properties										
UNS number	S43020	S43000	S43000	S44200	F45009	S20100				
EN name		X6Cr17				X12CrMnNiN17-7-5				
EN number		1.4016				1.4372				
Density (kg/m^3)	7720	7720 🏠	7670 🐥	7800 🏠	7800 🏠	7800 🏠				
Price (EUR/kg)	1.45	1.4 🖟	1.46 🏠	1.48 🏠	1.25 👃	1.88 🕆				
Composition overview										
Composition detail (metals, ceramics and glasses)										
Sio-data										
Mechanical properties										
Young's modulus (Pa)	2e11	2e11	2e11	2e11	1.91e11 🖶	1.97e11 堤				
Flexural modulus (Pa)	2e11	2e11	2e11	2e11	1.91e11 🐥	1.97e11 🐺				
Shear modulus (Pa)	7.79e10	7.79e10	7.79e10	7.79e10	7.46e10 🐥	7.75e10 🐥				
Bulk modulus (Pa)		1.51e11	1.51e11	1.51e11	1.41e11	1.42e11				
Poisson's ratio	0.28	0.28	0.28	0.28	0.275 🐥	0.27 🐺				
Shape factor	49.6	61 🕇	61 🕇	59 👚	23 👃	23 👃				
Yield strength (elastic limit) (Pa)	4.5e8	2.91e8 🕹	3.44e8 👃	3.08e8 🕹	3.67e8 🕹	9.82e8 👚				
Tensile strength (Pa)	5.94e8	5.08e8 👃	5.94e8	5.58e8 🐺	3.67e8 🕹	1.31e9 👚				
Compressive strength (Pa)	2.75e8	2.75e8	2.75e8	3.08e8 👚	6.71e8 🕆	9.82e8 👚				
Flexural strength (modulus of rupture) (Pa)	4.5e8	2.75e8 👃	2.75e8 👃	3.08e8 👃	8.14e8 🕆	9.82e8 👚				
Elongation (strain)	0.122	0.226 👚	0.122	0.245 👚	0.00194 🕹	0.0592 👃				
Hardness - Vickers (Pa)	1.94e9	1.68e9 👃	1.68e9 👃	2.03e9 🏠	5.86e9 🕆	3.94e9 👚				
Hardness - Rockwell B	91	79.8 🕹	83.9 🐥	89.9 🐥		112 🕇				
Hardness - Rockwell C	10.4	5.33 👃	6 🦺	11.7 🕆		40.9 🕆				
Hardness - Brinell (Pa)	1.9e8	1.73e8 🐺	1.7e8 🬷	1.82e8 🐺		3.8e8 🕆				
Fatigue strength at 10^7 cycles (Pa)	2.67e8	2.37e8 🕹	2.67e8	2.84e8 🕆	1.47e8 🕹	5.18e8 🕆				
Fracture toughness (Pa.m^0.5)	1e8	1e8	1e8	9.74e7 🖶	1.56e7 🐣	7.74e7 👃				
Mechanical loss coefficient (tan delta)	0.00112	0.00112	0.00112	0.00101 👃	0.00194 🕆	0.00037 👃				
Thermal properties										
Melting point (°C)	1470	1470	1470	1480 👚	1200 👃	1420 🤑				
Maximum service temperature (°C)	808	808	808	974 👚	949 👚	820 🏠				
Minimum service temperature (°C)	-56	-56	-56	-56	0 🕇	-273 🤳				
Thermal conductivity (W/m.°C)	24.9	24.9	24.9	24.9	23.5 🐥	16 🕹				
Specific heat capacity (J/kg.°C)	488	488	488	458 🖶	540 👚	510 👚				
Thermal expansion coefficient (strain/°C)	0.000012	0.0000105 🦺	0.000011 🐥	0.0000102 👃	0.00001 🤑	0.0000164 🕆				
Latent heat of fusion (J/kg)	425000	272000 👃	272000 👃	272000 🤳	272000 👃	272000 👃				

C.Maglioni, A.S.Martinez - PSB Dump Design