

Straight scaling FFAG experiment

J.-B. Lagrange, E. Yamakawa, T. Uesugi, Y. Ishi, Y. Kuriyama, B. Qin, K. Okabe, Y. Mori, Y. Yoshino, R. Nakano, Y. Niwa, T. Minamikawa, Y. Ito, M. Takabatake

FFAG12 - Nov. 2012

2

2

2

Experiment

3

Experiment

Circular case

Straight case

Linearized equations of motion for a momentum *p*:

 $\begin{cases} \frac{d^2x}{ds^2} + \frac{1-n}{\rho^2}x = 0, & (x, s, z): \text{ curvilinear coordinates} \\ \frac{d^2z}{ds^2} + \frac{n}{\rho^2}z = 0. & \rho: \text{ curvature radius} \end{cases}$

Independent of momentum *p*:

 $\begin{cases} \left(\frac{\partial \rho}{\partial p}\right)_s = 0, \quad \blacksquare \quad \text{Similarity of the reference trajectories} \\ \left(\frac{\partial n}{\partial p}\right)_s = 0. \quad \blacksquare \quad \text{Invariance of the focusing strength} \end{cases}$

Change of coordinates: introduction of average abscissa χ .

Straight case

Introduction of normalized field gradient: $m = \frac{1}{\overline{B}} \frac{d\overline{B}}{d\chi}$

Invariance of the focusing strength gives condition on *m*: $m = m_1 + m_2 \tan \zeta(\chi)$

$$B(\chi, s) = B_0 e^{\left[m_1(\chi - \chi_0) + m_2 \int_{\chi_0}^{\chi} \tan \zeta(\chi) d\chi\right]} \mathcal{F}(s)$$

New case: straight case

$$\zeta = const.$$
 \longrightarrow $m = const.$

$B(X,Y) = B_0 e^{m(X-X_0)} \mathcal{F} \left(Y - (X-X_0) \tan \zeta\right)$

Rectangular case: $\zeta = 0$

Tilted straight case: $\zeta = const$.

8

Goal of the experiment

The circular scaling law has been confirmed by experiment in the past.

The straight scaling law is new, and needs to be confirmed through experiment.

➡Design and manufacturing of a straight scaling cell prototype, and measure of the horizontal phase advance for 2 different energies.

Layout of the experiment

10

Use of 2 energies: 7 MeV and 11 MeV.

Layout of the experiment Movable slit H- beam from Linac **Bellows** Bellows Vacuum Chamber \mathcal{M} $\sqrt{}$ Fluorescent screen Camera Collimator system Movable straight Scaling FFAG cell **Courant-Snyder parameters** measurement system Set the entrance linear

Set the entrance linear parameters (β_0 and α_0) and emittance (ϵ).

$$\begin{vmatrix} \beta_0 &= \frac{b}{2} = 0.77 \ m \\ \alpha_0 &= 0 \\ \epsilon_{rms} &= \frac{a^2}{18b} = 0.14 \ \pi \ mm.mrad \\ \text{JB Lagrange FFAG12 - Nov. 2012} \end{vmatrix}$$

Layout of the experiment **Movable** slit H- beam from Linac **Bellows** Bellows Vacuum Chamber ~~~~~~ \sim ~~~~~ ~~~~~ Fluorescent screen Camera-Collimator system Movable straight Scaling FFAG cell **Courant-Snyder parameters** measurement system Measure linear parameters (β_1 and α_1), position and <u>angle</u> of the beam.

Layout of the experiment

Straight Scaling FFAG cell design

- C-shape Magnets to have easy access to the pole.
 Cell able to move horizontally to match the different reference trajectories.
 - Rectangular magnets.

Type	FDF
<i>m</i> -value	$11 {\rm m}^{-1}$
Total length	4.68 m
Length of F magnet	$15~\mathrm{cm}$
Length of D magnet	$30 \mathrm{~cm}$
Max. B Field (D magnet)	$0.3 \mathrm{T}$
Max. B Field (F magnet)	0.2 T
Horizontal phase advance	87.7 deg.
Vertical phase advance	106.2 deg.

Coils:Max 3500 A.T/coil.

18 turns x 4 layers = 72 turns of 5 mm x 2 mm cross section wire.
 ~5 A/mm² - Indirect water cooling system.
 Power supply per magnet (D): 100 A, 30 V.
 Whole system power consumption: ~1 kW.

Magnet design Pole shape configured with POISSON, then TOSCA.

Magnetic field in D magnet (30 cm long). TOSCA model.

Magnetic field in F magnet (15 cm long). TOSCA model.

Tracking in TOSCA Field map

Local m value vs horizontal abscissa

Horizontal (plain) and vertical (dot) phase advances vs kinetic energy

FIELD MEASUREMENT

Measured field map created

Comparison TOSCA-Measure

Difference of vertical field in the mid-plane in Gauss between TOSCA map and measured map JB Lagrange FFAG12 - Nov. 2012

Comparison TOSCA-Measure

Local m-value vs horizontal abscissa

<u>Good agreement</u> (difference < 1%)

Experimental measurement

$$\begin{pmatrix} x_1 \\ x'_1 \end{pmatrix} = \begin{pmatrix} \sqrt{\frac{\beta_1}{\beta_0}} \cos \psi & a_{12} \\ \frac{-\alpha_1 \cos \psi - \sin \psi}{\sqrt{\beta_1 \beta_0}} & a_{22} \end{pmatrix} \cdot \begin{pmatrix} x_0 \\ 0 \end{pmatrix}$$

Exit parameters to measure: x_1 , x'_1 , β_1 and α_1 . For each energy, the beam is launched 3 times: On the reference trajectory, -10 mm off the reference trajectory, +10 mm off the reference trajectory. x'_1

Experimental measurement

Experimental measurement

 α_1 measurement from

• The slope of the line x' vs. x_{slit} : $slope = -\left(\frac{\alpha}{\beta}\right)_{slit}$

the beta value

> Drift transfer matrix tracking to obtain α_1 .

Experiment

Experimental results

$$\tan\psi = -\alpha_1 - \frac{\beta_1 x_1}{x_1}$$

	$\bar{x_1} (\mathrm{mm})$	$\bar{x'_1} \pmod{1}$	$ar{eta_1}$ (m)	$\bar{lpha_1}$	$\psi_{exp.}$ (deg)	ψ_{TOSCA} (deg)
$11 { m MeV}$	2.0	-2.4	17.7	-1.5	87.5 ± 3.3	87.5
$7 \mathrm{MeV}$	1.8	-2.1	11.7	-1.0	86.1 ± 9.6	87.6

 $\psi_{exp}(11 \text{ MeV})=87.5 \text{ deg}$ $\psi_{exp}(7 \text{ MeV})=86.1 \text{ deg}$

Straight scaling law confirmed.

Summary

Straight scaling FFAG theoretical magnetic field:

 $B(X,Y) = B_0 e^{m(X-X_0)} \mathcal{F} \left(Y - (X - X_0) \tan \zeta\right)$

Output To confirm the theory, an experiment has been conducted:

- Obsign of a straight scaling FFAG cell,
- Manufacturing of a prototype,
- Measure of the magnetic field of the prototype,
- Measure of the horizontal phase advances for 2 different energies

STRAIGHT SCALING LAW CLARIFIED

A special thank to all the people of the lab for their hard work!! IB Lagrange FFAG12 - Nov. 2012

26

Thank you for your attention

β₁ measurement

$$\beta_1 = \frac{\sigma_{rms}^2}{\epsilon_{rms}}$$

30

α_1 measurement

Experimental results

	$x_1 \pmod{2}$	$x'_1 \pmod{1}$	$\sigma~({ m mm})$	$\left(\frac{\alpha}{\beta}\right)_{slit}$ (m ⁻¹)
Ref. traj. 11 MeV	0.1	-0.5	1.7	-0.09
+10 mm 11 MeV	1.4	-1.8	1.6	-0.08
-10 mm 11 MeV	-2.6	2.9	1.4	-0.11
Ref. traj. 7 MeV	0.6	0.5	1.1	-0.09
+10 mm 7 MeV	0.3	-1.9	1.1	-0.05
-10 mm 7 MeV	-3.4	2.2	1.8	-0.11

Error estimation

Dominated by the beta error due to the fluctuation of the beam size.

statistical and independent error from the variation of rms beam size σ_{rms} .

error for 11 MeV: 3.7% error for 7 MeV: 11.1%