

Development of new FFAG RF Cavity at KURRI

Fukui University Tomoya Minamikawa

Contents

- Background
- Introduction
- Flow of my work
- considering shape
- the processing new magnetic core
- Experiment
- Summary

Background

- Analyze properties of materials using neutron beam
- Accelerator Driven Subcritical Reactor
- (Cancer therapy with neutron beam)

Typical of the RF Cavity

Introduction

We want to get more acceleration voltage to get High power beam.

If the acceleration voltage is more higher, we can increase repetition rate. It means,

• we can increase Average output beam current

• The beam can avoid the foil quickly. Beam doesn't lost particles.

We should Install another cavity.

Present spec

Energy (MeV)	10	
	0	
Accelerating Voltage (KV/turn)		
Repetition rate (Hz)	20	
Cavity Impedance (Ω)	50	
	0	
Number of cores	2	

Flow of my work

Consider the shape(1)

RF Cavity has rectangular beam duct.

▷We should make the large aperture core.

If the new core can be made from RCS core, We don't have to use a large oven.

> It is useful technique to make the core from piece.

Consider the shape(2)

Ribbon core

Outer circumference(mm) : 3656.79 Inner circumference(mm) : 2164.53 In(OC/IC) :0.227 Compare with RCS L₀ : 0.57

Consider the shape(2)

Ribbon core

Outer circumference(mm) : 3656.79 Inner circumference(mm) : 2164.53 In(OC/IC) :0.227 Compare with RCS L₀ : **0.57**

Cutting core

How to make Ribbon Core

Cut troidal core

Polish the cut surface and shape the flower cavity

Exp1-Impedance

Change the gap of the cut surface : 0mm , 1mm

J-parcRCS

Flower Core 0mm
Flower Core 1mm

$$Q = \frac{\mu'}{\mu'} = \frac{R}{\omega L}$$

• The form of the Impedance doesn't change almost.

• RCS Inductance is larger than Flower core's.

"Flower Core 0mm L" is larger than "Flower Core 1mm L".
Inductance depends on the gap of the cut surface.

Decreasing Inductance means

Impedance may not be so broad(Q is higher) \rightarrow should check if it can be used on the whole frequency range

*L,R of the J-parcRCS are normalized by L,R of Flower Core

J-parcRCS

Flower Core 0mm
Flower Core 1mm

 $Q = \frac{\mu'}{\mu'} = \frac{R}{\omega L}$

• The form of the Impedance doesn't change almost.

• RCS Inductance is larger than Flower core's.

"Flower Core 0mm L" is larger than "Flower Core 1mm L".
Inductance depends on the gap of the cut surface.

Decreasing Inductance means

Impedance may not be so broad(Q is higher) \rightarrow should check if it can be used on the whole frequency range

*L,R of the J-parcRCS are normalized by L,R of Flower Core

J-parcRCS

Flower Core 0mm
Flower Core 1mm

.../ D

$$Q = \frac{\mu}{\mu'} = \frac{R}{\omega L}$$

•The form of the Impedance doesn't change almost.

• RCS Inductance is larger than Flower core's.

"Flower Core 0mm L" is larger than "Flower Core 1mm L".
Inductance depends on the gap of the cut surface.

Decreasing Inductance means

Impedance may not be so broad(Q is higher) \rightarrow should check if it can be used on the whole frequency range

*L,R of the J-parcRCS are normalized by L,R of Flower Core

Exp2-Impedance with Capacitor

Set the resonance point at 2MHz using capacitor (1,200pF)

Result - Exp2,: Impedance with Capacitor-

Frequency vs R

Set the resonance point at 2MHz using capacitor

Accelerating Freq: 1.5MHz ~ 4.4MHz

Impedance is broad. We can get High Accelerating voltage constantly.

We can get the Impedance $130^{140} \Omega$ at whole frequency range.

If we install **4 cores** on the new RF cavity and input ***14~15 kW**, we can get **4kV** per turn.

We will be able to make The New Cavity **Reusing RCS Cores**.

Impedance	How many cores can we	Aim of the	Input Power we need
par a core(Ω)	install	Acc Vol "V _{RF} "(kV)	(kW)
130~140	4	4kV	14~15

Summary

[Summary] We will Install New RF Cavity to get high power beam

- Cut J-PARC RCS core and make new core "Ribbon core"
- Measure the Impedance R and Inductance L" which concern performance of the cavity.
- Effect of the L₀

Flower Core is 0.57 times the RCS Core

Effect of the cut surface

Impedance almost doesn't change, Inductance decreased →Impedance may not be so broad(Q is higher)

Impedance with Capacitor

Broadband Impedance On the cavity, we install 4 cores and input 15kW. ©Get 4kV of the Accelerating Voltage.

[Future plan]

- Put the core in the new cavity and measure the Impedance.
- Input high power
- Thermal test

Thank you for your attention

Impedance

*Input Power is

Effect of the Flower cavity

②Effect of the cut surface

Decrease Magnetic field at cut surface \rightarrow Decrease L

▷We may not get the Impedance which is broadband.

$$Q = \frac{\mu'}{\mu''} = \frac{R}{\omega L}$$

