

vSTORM muon storage ring

Jean-Baptiste LAGRANGE

Outline

2

Racetrack FFAG muon storage ring

The "Collaboration"

Brice,⁴ A.D. Bross,⁴ H. Cease,⁴ J. Kopp,⁴ N. Mokhov,⁴ J. Morfin,⁴ D. Neufer,⁴ M. Popovic,⁴ P. Rubinov,⁴ S. Striganov,⁴ A. Blondel,⁵ A. Bravar,⁵ E. Noah,⁵ R. Bayes,⁶ F.J.P. Soler,⁶ A. Dobbs,⁷ K. Long,⁷ J. Pasternak, 7 E. Santos, 7 M.O. Wascko, 7 S.K. Agarwalla, 8 S.A. Bogacz, 9 Y. Mori,¹⁰ J.B. Lagrange,¹⁰ A. de Gouvêa,¹¹ Y. Kuno,¹² A. Sato,¹² V. Blackmore,¹³ J. Cobb,¹³ C. D. Tunnell,¹³ J.M. Link,¹⁴ P. Huber,¹⁴ and W. Winter¹⁵

¹Brunel University, ²University of California, Riverside, ³Institute for Particle Physics Phenomenology, Durham University ⁴Fermi National Accelerator Laboratory, ⁵University of Geneva ⁶University of Glasgow, ⁷Imperial College London, ⁸Instituto de Fisica Corpuscular, CSIC and Universidad de Valencia, ⁹Thomas Jefferson National Accelerator Facility, ¹⁰Kyoto University, ¹¹Northwestern University, ¹²Osaka University, ¹³Oxford University, Subdepartment of Particle Physics, ¹⁴Center for Neutrino Physics, Virginia Polytechnic Institute and State University

¹⁵Institut für theoretische Physik und Astrophysik, Universität Würzburg

Fermilab Physics Advisory JB Lagrange - FFAG12 - Nov. 2012

Racetrack FFAG

<u>Very low energy neutrino factory</u> with a muon storage ring is investigated for neutrino experiments (neutrino mixing matrix).

Muons decay in neutrinos in the storage ring

Racetrack to collect the maximum decayed neutrinos.

Conventional racetrack storage ring has small longitudinal acceptance: $\frac{\Delta p}{n} \sim \pm 1\%$

Dramatically reduces the brightness at the detector.

FODO Decay ring

3.8 GeV/c – 10% momentum acceptance, circumference = 350 m

Alan Bross

Fermilab Physics Advisory JB Lagrange - FFAG12 - Nov. 2012

Outline

6

Racetrack FFAG muon storage ring

Constraint: in the straight part, the scallop must be as small as possible to have the biggest brightness at the detector. 15 mrad has been chosen as the maximum angle.

Longitudinal acceptance: $\stackrel{\frown}{=}$

$$\frac{\Delta P}{P} = 20\%$$

	Circular	Straight
	Section	Section
Type	FDF	DFD
Cell radius [m]/opening angle [deg] or Length [m] $36/11.25$	6
k-value or m-value	24.95	$2.65 {\rm m}^{-1}$
Packing factor	0.96	0.10
Horizontal phase advance /cell [deg]	67.5	13.1
Vertical phase advance /cell [deg]	11.25	16.7
Average dispersion /cell [m]	1.39	0.38
Number of cells /ring	16×2	40×2
IB Lagrange - FFAG12 - N		G12 - Nov 201

Layout

8

Dispersion function

9

Tune diagram $\frac{\Delta P}{P} = \pm 20\%$

10

Multi-particle tracking <u>without dispersion matching</u>. 500 particles with a Waterbag distribution. Unnormalized emittances are 400 π mm.mrad in transverse planes. Momentum of the particles uniformly distributed around 3.8 GeV/c <u>±16%</u>. — no particle lost in 60 turns.

11

Racetrack FFAG for vSTORM Multi-particle tracking <u>with dispersion matching</u>. 2100 particles with a Waterbag distribution. Unnormalized emittances are 400 π mm.mrad in transverse planes. Momentum of the particles uniformly distributed around 3.8 GeV/c <u>±20%</u>. — no particle lost in 60 turns.

Outline

13

Racetrack FFAG muon storage ring

Summary

- Promising results for racetrack FFAG ring as a muon storage ring.
- Large momentum acceptance compared with FODO lattice.

Concerns - Improvements?

- Non realistic fringe field fall offs (linear).
- Size is quite big (x2 FODO).
- Oifferent k with different radii in circular section ?
- Spiral + tilted straight lattice ?
- ☑ Injection scheme ?

Thank you for your attention