Imperial College London

FFAGs for muon acceleration for the Neutrino Factory and a Muon Collider

J. Pasternak, Imperial College London / RAL STFC Work in collaboration and with contributions from: M. Aslaninejad (IC), J. Scott Berg (BNL), N. Bliss (STFC/Technology/DL) C. Bontoiu (IC), T. Jones (STFC/Technology/DL), M. Cordwell (STFC/Technology/DL), D. Kelliher (ASTeC/STFC/RAL), S. Machida (ASTeC/STFC/RAL), H. Witte (JAI-Oxford)

16.11.2012, Osaka, FFAG'12

Outline

- Introduction.
- NS-FFAG for the old baseline 25 GeV
- Designs for new baseline of 10 GeV
- RDR baseline decision.
- Conclusions

Introduction

New IDS-NF baseline.			
Number of cells	67 m		
Circumference	669 m		
RF voltage	1.1956 GV		
Max field in F magnet	4.4 T		
Max field in D magnet	6.2 T		
F magnet radius	16.1 cm		
D magnet radius	13.1 cm		
Muon decay	7.1 %		
Injection energy	12.6 GeV		
Extraction energy	25 GeV		

- •Lattice was updated to incorporate 5m long drifts for symmetric injection/extraction.
- Injection/extraction geometries.
- •Kicker/septum studies.
- •Preliminary design of the main magnets.

Non-scaling FFAG is selected for the final muon acceleration at the Neutrino Factory. Advantages include:

- Allows very fast acceleration (~12 turns).
- Large dynamic aperture due to linear magnets + high degree of symmetry.
- More turns than in RLA more efficient use of RF – cost effective.
- Quasi-isochronous allows fixed frequency RF system.
- Orbit excursion and hence magnet aperture smaller than in the case of a scaling FFAG – cost effective.
- Principles of NS-FFAG are now being tested during ongoing EMMA commissioning.

Layout and optics

Beam Optics and Acceleration

Acceleration studies:

6D tracking, full transverse emittance, Gaussian distribution, RF synchronization at 21 GeV

Acceleration studies (2):

6D tracking, small transverse emittance, Gaussian distribution, RF synchronisation at 21 GeV

Kin. Energy [MeV]

Non-zero chromaticity (ToF varation with the transverse amplitude) + distortion of the serpentine channel (to be further investigated).

Recent progress on acceleration in 25 GeV machine, for the EUROnu report

Longitudinal emittance growth is visible, but low energy tails has been removed (potential problem for extraction).
This gives a hope to recover quality in FFAG!

Injection/Extraction geometries

- Septum field was limited to 2 T by the stray fields studies (see next slides).
- Both injection and extraction are in the horizontal plane (minimal additional magnet aperture needed and no generation of the vertical dispersion).
- Larger apertures in the special magnets witch are needed have been calculated.

Magnet aperture studies

Magnet aperture in F magnet near the injection septum. Blue is the requirement for the circulating beam, red for kicked beam and green is the final special magnet aperture.

Magnet type	Number of magnets	Radius (cm)
Normal F	116	16.3
Normal D	58	13.7
Injection F	4	20.8
Injection D	4	16.1
Extraction F	8	19.8
Extraction D	2	15.5

Magnet aperture in F magnet before the extraction septum.

Magnet aperture in D magnet rules out the vertical extraction.

Kicker magnet

- Travelling wave type.
- Geometry
 - Aperture: 0.3x0.3 m² (recent update ~0.32x0.22)
 - Yoke: 120 mm
 - Length: 4.4 m
- Field: 100 mT (to add margins)
- Current: 29 kA
- Voltage 60 kV
- Magnetic energy: 1700 J
- Inductance (single turn): 5.1 uH
- Subdivided into 4 smaller kickers (36=9x4 PFNs and switches per magnet).
- Rise/fall time 2.2 us.
- Impedance matching
 - Add capacitors

Current pulses in 3 kicker sections – "travelling wave" using PSPice

Septum geometry

•The goal of the study was to limit the field leakage from the septum to the circulating beam region.

- •We were using COMSOL and performed 2D simulations.
- •Starting point was a basic "C-shape" septum magnet.
- •Iron was introduced all around the circulating beam.
- •Iron was replaced by the soft magnetic cobalt-iron-alloy with high saturation limit.
- •Chamfer was introduced.

•The advanced material is the soft magnetic cobalt-iron-alloy

(VACOFLUX 50 from www.vacuumschmelze.de)

•We may still look for more advanced materials.

Effect of Septum Field Leakage

Stray fields have been generated using COMSOL
Multipoles have been fitted to the numerical points up to the decapole.

Effect of Septum Field Leakage (2)

Accelerated Orbit [m]

Septum field zero, no leakage.

Effect of Septum Field Leakage (4)

Main magnet design

The current design effort:

- Focuses on the conventional "Cos-Theta" with separate layers for dipole and quadrupole components.
- This is motivated by simplicity and in addition a possibility of a flexible optics tuning.
- Design is performed using the CERN ROXIE code.
- Work on F magnet is more advanced (included in the IDR).

F magnet geometry

Ring Layout (12.6 -25 GeV NS-FFAG)

Towards engineering design

•Start of the engineering effort!

- •Effective drift length reduced to 4m (due to space for the cryostat and flanges).
- Kicker field increased 0.106 T
- Extraction septum field to 1.94 T.
- •Injection/extraction still feasible!

Discovery of the large θ_{13} in reactor experiments

PMTs in the Daya Bay detector, (from Nature News)

	sin ² 20 ₁₃		
	Value	Statistical	Systematic
D-Chooz	0.086	0.041	0.030
Daya Bay	0.092	0.016	0.005
RENO	0.113	0.013	0.019
<u>Mean</u>	0.098	0.0	13

Baseline modifications due to the large θ_{13}

Detectable CP-violation fractions as a function of muon energy in the storage ring and a baseline length, from S. Pascoli's talk at IDS-NF meeting in Glasgow Effects of large θ_{13} on the baseline:

- Only one decay ring needed with reduced energy/circumference/cost (see David's talk).
- Modifications in the muon acceleration scheme (only 10 GeV needed).

FFAG Designs Comparison

	25 GeV machine	10 GeV machine Scott (preliminary)	10 GeV machine Jaroslaw (preliminary)
Circumference [m]	669	434	369.9
Nomber of RF cavities	50	36	26
RF voltage [MV]	1196	864.8	~625
Number of turns	11.6	6.7	8.5
Number of cells/magnets	67/201	53/159	49/147
Drift length [m]	5	3.8	3.8
Magnetised length [m]	~263	~153.1	~108.3

The large θ_{13} scenario, NS-FFAG 5-10 GeV (preliminary)

• Assumption:

Use the same technology as in 25 GeV machine (B field levels, RF, apertures, etc.).

Preliminary acceleration study in the ring with sextupoles (not yet optimised)

Apertures and phase spaces

Apertures a bit larger than in 25 GeV machine!

Preliminary results for 4-10 GeV machine (factor 2.5 in acceleration)

ns-FFAG Layout with continuous cryomodules

53

Cryogenic schematic – Continuous string

Septum magnet – NF ns-FFAG

• Septum design on-going.

 Image below is a work in progress schematic of superconducting 2T extraction septum. 3D design is required to ascertain feasibility.

Images above and right ref: NF Interim Design Report

Baseline modifications due to the large θ_{13}

Detectable CP-violation fractions as a function of muon energy in the storage ring and a baseline length, from S. Pascoli's talk at IDS-NF meeting in Glasgow Effects of large θ_{13} on the baseline:

- Only one decay ring needed with reduced energy/circumference/cost (see David's talk).
- Modifications in the muon acceleration scheme (only 10 GeV needed).

For 10 GeV muon acceleration two options have been proposed:

- Option I: using linac and two Recirculating Linear Accelerators (RLAs) it is very similar to the previous baseline part up to 12.6 GeV
- Option II: using linac+RLA+ Nonscaling Fixed Field Alternating Gradient (NS-FFAG) ring – NS-FFAG could use the same technology developed for 12.6-25 GeV ring.

Option II was selected at the Nufact'12 due to 5 GeV breaking point, which was favoured as better for an intermediate staging for physics at that time. J. Pasternak

Muon Acceleration Baseline Decision

- There is no need for any intermediate energy stage for the NF (no cost advantage due to a different baseline length specification, a different decay ring design and a detector location).
- According to the current cost exercise both options perform very similar.
- •NS-FFAG is a new type of accelerator with some operational risk

• Take Option I (without FFAG and 2 RLAs to 10 GeV) or even modify the old 12.6 GeV option with 2 RLAs.

But...

- According to the current cost exercise both options perform very similar.
- The error bars are huge, especially as the RLA cost model is scaled from the FFAG one. Are we sure we want to remove a possibility to have options in the system, which is the clear cost driver?

•NS-FFAG is a new type of accelerator with some operational risk The proof of principle has been demonstrated during the EMMA commissioning at Daresbury Lab.

RF budget for muon acceleration in the NF Back of envelope calculations (very crude) Efficiency Factors •Old 25 GeV scenario: (0.9-0.15)/1 + (12.6-0.9)/4.5 + (25-12.6)/10.3 [GeV/e] = ~4.5 GV **FFAG RLAs** LINAC New 10 GeV scenario, Option I (0.8-0.15) + (10-0.8)/4.5 [GeV/e] = ~2.7 GV ← Both equal LINAC **RLAs** up to error bars New 10 GeV scenario, Option II (1.2-0.15) + (5-1.2)/4.5 + (10-5)/9 [GeV/e] = ~2.5 GV LINAC **RLAs FFAG Conclusion:** - both scenarios have approximately the same cost, - Are they ideal?

Summary

- The IDS baseline was updated and the NS-FFAG was removed.
- NS-FFAG will be only in the appendix of the RDR!
- In my personal view there is still a room for better and more cost effective designs and it is still worth to consider new options for the Neutrino Factory (racetrack, advanced etc.)!
- NS-FFAGs are still important for a Muon Collider and a Higgs Factory.