

Advanced Scaling FFAG egg-shape design study for PRISM

Jean-Baptiste LAGRANGE

FFAG12 - Nov. 2012

2

- "Egg-shape" design parameters
- Linear fringe field fall-offs
- Enge functions field fall-offs
- Second Conclusion

"Egg-shape" design parameters

Linear fringe field fall-offs

Enge functions field fall-offs

Conclusion

Egg-shape design

Small Bending cell FDF triplet	
k-value	
total bending angle	3
Average radius	
Phase advances:	
Horizontal μ_x	
Vertical μ_z	
Dispersion	

3.82 39.15 deg. 5 m 90 deg. 60 deg. 1 m Large Bending cell FDF triplet k-value total bending angle Average radius Phase advances: Horizontal μ_x Vertical μ_z Dispersion

 $\begin{array}{c} 28.9503 \\ 11.7 \ \mathrm{deg.} \\ 30 \ \mathrm{m} \end{array}$

75 deg. 81 deg. 1 m

4

Betafunctions

Horizontal (plain red) and vertical (dotted purple) betafunctions of half the ring in egg-shape PRISM

Tune point

6

Working point of the ring in the tune diagram. Integer (red), quadrupole (green), sextupole (blue) and octopole (purple) normal resonances are plotted.

7

"Egg-shape" design parameters

Linear fringe field fall-offs

Enge functions field fall-offs

Conclusion

Linear fringe field fall-offs

•To simulate fringe fields, linear fall-offs are used first.

$$B_z(r,\theta) = B_0 \mathcal{F}(\theta) \left(\frac{r}{r_0}\right)'$$

$$\begin{aligned} \mathcal{F} &= \frac{\theta - \Theta_{EFB_{en}} + \Theta_{FE_{en}}}{2\Theta_{FE_{en}}}, \text{ for } \Theta_{EFB_{en}} - \Theta_{FE_{en}} \leq \theta < \Theta_{EFB_{en}} + \Theta_{FE_{en}} \\ \mathcal{F} &= 1, \text{ for } \Theta_{EFB_{en}} + \Theta_{FE_{en}} \leq \theta < \Theta_{EFB_{ex}} - \Theta_{FE_{ex}} \\ \mathcal{F} &= 1 - \frac{\theta - \Theta_{EFB_{ex}} + \Theta_{FE_{ex}}}{2\Theta_{FE_{ex}}}, \text{ for } \Theta_{EFB_{en}} + \Theta_{FE_{en}} \leq \theta < \Theta_{EFB_{ex}} - \Theta_{FE_{ex}} \\ \mathcal{F} &= 0, \text{ for } \theta < \Theta_{EFB_{en}} - \Theta_{FE_{en}} \text{ or } \theta \geq \Theta_{EFB_{ex}} - \Theta_{FE_{ex}}, \end{aligned}$$

●1st order interpolation off the mid-plane.

Linear fringe field fall-offs

•To simulate fringe fields, linear fall-offs are used first.

●1st order interpolation off the mid-plane.

Linear case: Dynamic aperture study

$\approx 40\ 000\ \pi\ \text{mm.mrad}$

≈8 000 π mm.mrad

Horizontal (left) and vertical (right) maximum stable amplitude over 100 turns. Far collimators identify lost particles.

11

"Egg-shape" design parameters

Linear fringe field fall-offs

Enge functions field fall-offs

Second Conclusion

Enge fringe field fall-offs

• To check validity of dynamic aperture, enge fall-offs are then used.

$$B_z(r,\theta) = B_0 \mathcal{F}(\theta) \left(\frac{r}{r_0}\right)^{-1}$$

$$\mathcal{F}(\theta) = \mathcal{F}_{en}(\theta) \times \mathcal{F}_{ex}(\theta)$$

with
$$\begin{cases} \mathcal{F}_{en}(\theta) = \frac{1}{1 + e^{C_1(\Theta_{EFB_{en}} - \theta)}}, \\ \mathcal{F}_{ex}(\theta) = \frac{1}{1 + e^{C_1(\theta - \Theta_{EFB_{ex}})}} \end{cases}$$

•4th order interpolation off the mid-plane.

Enge fringe field fall-offs

•To check validity of dynamic aperture, enge fall-offs are then used.

•4th order interpolation off the mid-plane.

Enge fringe field fall-offs

•To check validity of dynamic aperture, enge fall-offs are then used.

•4th order interpolation off the mid-plane.

Enge case: Dynamic aperture study

\approx 40 000 π mm.mrad

$\approx 1500 \,\pi \, mm.mrad!!!$

Horizontal (left) and vertical (right) maximum stable amplitude over 100 turns. Far collimators identify lost particles.

Amplitude dependance of the tune

Fractional part of the vertical tune for half of the ring in the linear case (plain) and in the Enge case (dotted).

- "Egg-shape" design parameters
- Linear fringe field fall-offs
- Enge functions field fall-offs

Summary

• Linear and Enge fringe field fall offs have a good agreement for the horizontal dynamic aperture.

• Very different for the vertical dynamic aperture !

• Enge fringe field fall-offs are more realistic, and must then be used for any vertical dynamic aperture study.

• Egg-shape design has a vertical acceptance half of the requirements: back to the first stage of the design.

Thank you for your attention