

EMMA recent results - Aperture and orbital period -

Shinji Machida on behalf of the EMMA group ASTeC/STFC Rutherford Appleton Laboratory 13-16 November 2012

Short introduction of EMMA (1)

- EMMA (Electron Model for Many Application) is the first non-scaling FFAG.
- It was constructed at Daresbury Laboratory purely for accelerator study.
- Use electron beams from ALICE injector.

Short introduction of EMMA (2)

- Only linear gradient magnets (quadrupole) are used.
- Bending action is provided by the off-axis orbit.

Looks similar to synchrotron, but field is constant.

Short introduction of EMMA (3)

• Three main goals.

• Large acceptance for huge (muon) beam emittance.

Short introduction of EMMA (4)

• Two of main goals were achieved in March 2011.

extracted beam

Machida et al., Nature Physics 8, 243 (2012)

Since last year

- Study of COD and its correction (next talk by David) had the top priority because everything else would become easier and nicer.
- Aperture survey at fixed momentum.
- Amplitude dependent orbital period.
- Experiment for PRISM demonstration.
- Tune crossing experiment.
- Less priority among ALICE/EMMA project.
- A lot of hardware troubles.
 - No rf since April 2012
 - Unstable kickers

Aperture survey and amplitude dependent orbital period

- Muon acceleration in a non-scaling FFAG is one of the main driving forces of the development.
- Muon beam has large emittance, 30,000 pi mm mrad (normalised).
 - Demonstration of large aperture of this type of FFAG.
 - Experimental confirmation of amplitude dependent orbital period.

Amplitude dependent orbital period

• A particle with small betatron oscillations (blue) circulates faster than the one with large betatron oscillations (red).

 This different becomes significant for muon beams whose emittance is huge.

Aperture survey and amplitude dependent orbital period measurement (1)

- In practice, these two measurements can be done at the same time.
 - Deflect a beam orbit before the injection point in horizontal and/or vertical direction.
 - The larger deflection makes the larger initial transverse amplitude.
 - The range of deflection which gives successful injection tells transverse aperture.
 - The orbital period measurement for each deflection (or each transverse amplitude) tells amplitude dependent orbital period.

Aperture survey and amplitude dependent orbital period measurement (2)

• Knobs to deflect a beam and scan the phase space.

Poincare monitor

• Online Poincare monitor tells where a beam is injected.

kicker signal

Experimental results (preliminary)

Measurement at 16.15 MeV/c.

Theory

• We know that orbital period depends on the transverse amplitude as (Berg, NIMA 570 15 (2007))

$$\Delta t \propto \xi J + O(J^{3/2})$$

 where \xi is chromaticity and J is transverse amplitude (or action).

Comparison (preliminary) between experiment and simulation

- Data taken on 3/4 October
- Does not show good agreement
 - Assuming horizontal amplitude is zero.
 - Beta function is wrong?

Measured aperture without COD correction

The same figure also shows that there is an aperture limit around $0.5 \sim 0.6$ pi mm rad. [sn]

period

Orbital

Design value is 3 pi mm rad.

Summary

- Preliminary results of amplitude dependent orbital period does not agree with simulation. Need to find out the source of discrepancy.
- Aperture is smaller than the design value. However, we know that COD of a few mm could reduce the aperture a lot.
- More systematic measurements are going on.

