Status of Accelerator Facility of Kyushu University

Nov. 13, 2012. FFAG-WS at Osaka University

Dept. of Phys., Kyushu Univ.
Noro, T.
• Brief history and present accelerator activities at Kyusyu University

• Construction of the tandem-FFAG accelerator facility in new campus

• Uses and requirements
Brief History of Accelerators in Kyushu University

• 1943 Construction of Van de Graaff accelerator
 Terminal Voltage : 3 MV (1952)

• 1959 Construction of Cock Croft Walton accelerator
 Acceleration energy : 500 kV (1962)

• 1963 Original pellet Chain Development (VdG)
 Terminal Voltage : 7.5 MV (1970)

• 1972 Construction of Tandem accelerator
 Terminal Voltage : 11 MV (1980)

• Present activities with the Tandem accelerator
 □ Few-nucleon systems □ 12C-AMS
 □ Astro-nuclear reaction ($\alpha + 12C \rightarrow 16O + \gamma$)

The tandem accelerator is still used actively.
Campus movement and construction of new facility

Schedule of the movement

2005-6: Faculty of Engineering
2015: Faculty of Science
(The schedule was recently fixed)

The present tandem accelerator is forced to shut down in 2014.

New accelerator facility is being constructed.
- Only an accelerator hall exists.
- Experimental area will be constructed as a part of the campus movement.
The test machine that Prof. Mori developed was transferred and reinstalled.

Newly constructed machine still under development
Further development at Kyushu

A machine with various possibilities
Challenges for new usage

Main accelerator: FFAG Synchrotron

“Center for accelerator and beam applied science”
Present (1st stage) FFAG accelerator facility

Accelerator and Beam Applied Science, Kyushu Univ.

Design values of the FFAG

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>magnet</td>
<td>Radial sector type (DFD-triplet)</td>
</tr>
<tr>
<td>Cell</td>
<td>12</td>
</tr>
<tr>
<td>K-value</td>
<td>7.62</td>
</tr>
<tr>
<td>Beam energy</td>
<td>12 → 150 MeV</td>
</tr>
<tr>
<td></td>
<td>(10 → 125 MeV)</td>
</tr>
<tr>
<td>Radius</td>
<td>4.47 → 5.20 m</td>
</tr>
<tr>
<td>Betatron tune</td>
<td>H: 3.69～3.80</td>
</tr>
<tr>
<td></td>
<td>V: 1.14～1.30</td>
</tr>
<tr>
<td>Max. field</td>
<td>F-field: 1.63 T</td>
</tr>
<tr>
<td>(along orbit)</td>
<td>D-field: 0.78 T</td>
</tr>
<tr>
<td>Circ. freq.</td>
<td>1.55～4.56 MHz</td>
</tr>
<tr>
<td>Repetition</td>
<td>100 Hz</td>
</tr>
</tbody>
</table>
Present (1st stage) FFAG accelerator facility

Accelerator and Beam Applied Science, Kyushu Univ.

History of the re-installation:

2008- Hardware reconstruction
2011- Commissioning of the injector cyclotron
2011- Commissioning of the FFAG accelerator
2011.12.2. One turn circulation was observed.
2012.11.- Installation of the RF cavities.

Beam signal form a tune monitor (2012.2.)
The 1st stage injector: cyclotron

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>AVF cyclotron</td>
</tr>
<tr>
<td>Beam Energy</td>
<td>10 MeV</td>
</tr>
<tr>
<td>Ion Source</td>
<td>Internal PIG (LaB$_6$ Cathode)</td>
</tr>
<tr>
<td>Extraction Radius</td>
<td>300 mm</td>
</tr>
<tr>
<td>Magnetic Field</td>
<td>Max. 1.54 T</td>
</tr>
<tr>
<td>RF Dee Voltage</td>
<td>40 kV</td>
</tr>
<tr>
<td>RF Frequency</td>
<td>47 MHz (2nd harmonic acceleration)</td>
</tr>
<tr>
<td>Beam Current</td>
<td>2 μA (Duty 4%, 100Hz)</td>
</tr>
</tbody>
</table>

Limitations:

- Proton (and deuteron) beam only.
- 10MeV is the maximum. (12 MeV is required for 150 MeV acceleration.)
- Time structure does not match the FFAG synchrotron.

→ Replacement of the injector is preferable.
Expected activities of the new facility at Kyushu Univ.

- Development research on the FFAG accelerator
 - various kinds of application

- Extension of present accelerator activities
 - low-energy nuclear physics \(\rightarrow\) astro-nuclear physics
 - AMS

- General purpose use in various fields
 - energy science, material science, life science, medical science (basic)
As a general purpose accelerator facility...

FFAG development
Underdeveloped machine just born.

Accelerator science
Many possibilities no other machines have.
- Flexible beam time-structure
- Large acceptance, multi-beam
- Possibility as a beam delay
- Acceleration of various beams
- High intensity by fast repetition

DNA processing, breed improvement

Life science

Environment science

DNA damage by heavy ion

Restoration of DNA survival by apoptosis

3-body force, nuclear data

Hadron science

Energy science

3NF is required in nucleus

1936: Yukawa predicted 2NF
1994: Sagara found experimental evidence of 3NF

Space simulation

Life science

Environment science

Fronteer

Industry use

Space medicine

Space-use devices

Monochro/white neutron field

Hadron science

Material science

Environment science

Industry use

Reactor material
Calibration of neutron detectors
Basic data for acc. driven reactor nuclear waste

Biological irradiation effect

Energy transfer process

Life science

Material science

Medical use (basic)

30% of incident energy are converted to other radiation

- High quality radiation treatment
- Radiation damage process of semiconductor devices

New field

- [] [] []
Expected activities of the accelerator facility at Kyushu Univ.

- Development research on the FFAG accelerator
 - various kinds of application

- Extension of present accelerator activities
 - nuclear physics
 - AMS

- General purpose use in various fields
 - energy science, material science, life science, medical science (basic)

A variety of beams are to be requested.

Introduction of Tandem accelerator, as an injector and for separate use, is preferable.
Transfer of the tandem accelerator from Kyoto Univ.

<table>
<thead>
<tr>
<th>Type</th>
<th>8UD Pelletron (NEC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal Voltage</td>
<td>8 MeV</td>
</tr>
<tr>
<td>Ion Source</td>
<td>SNICS II (→ MC SNICS) ALPHATROS</td>
</tr>
<tr>
<td>Injection Voltage</td>
<td>-200 kV → -80 kV</td>
</tr>
<tr>
<td>Pellet Current</td>
<td>150 μA × 2</td>
</tr>
<tr>
<td>Charge Stripper</td>
<td>C-foil and N₂-gas</td>
</tr>
<tr>
<td>Tank size</td>
<td>3 m⁰ × 13.6 m</td>
</tr>
<tr>
<td>Gas</td>
<td>5 atm SF₆</td>
</tr>
</tbody>
</table>
Plan view of the accelerator facility at Kyushu Univ.
Construction of the accelerator facility

1st phase:
FFAG (E_p=120~150MeV)
(from KEK: 2008-2009)
Feb. 18, 2012
Installation of accelerator tank

Mar. 11, 2012
tandem prefab. and
FFAG bldg.
Re-fabrication of the accelerator is in progress

Nov. 6, 2012
Construction of the accelerator facility

1st phase: FFAG (E_p=120~150MeV)
(from KEK: 2008-2009)

2nd phase: (recently scheduled)
Experimental area and apparatus for Tandem experiments
(campus movement of Faculty of Sci. 2013-2015)

1.5th phase: Tandem accelerator
(from Kyoto Univ.: 2011-2014)

2th phase (not scheduled):
Experimental apparatus for FFAG experiments
(campu
Construction schedule

Campus move

Faculty of Eng.

Faculty of Sci.

Buildings

1st stage
(FFAG bldg.)

2nd stage
(Tandem + exp. area)

FFAG

transfer
construction
commissioning

 Injector cyclotron

Tandem accelerator

transfer construction commissioning

Present tandem

shut down
Uses and requirements
① Early stage

Development for stable operation of FFAG

Separate use of tandem-beams
- Astro-nuclear physics
- AMS etc.
General uses of FFAG-tandem system

Requirements:

- **Moderate intense beam, at least**
 - Matching of FFAG (AC) and tandem (DC) is required.
 - One way is to use pulsed ion sources.
 - 100 Hz of FFAG beams is much faster than the time-constant of the tandem terminal.

- **Slow extraction**
 - Essential for nuclear-scattering experiment.
Produced RI (life > 1 min)
- ^7Be, ^{10}Be, ^{11}C, ^{14}C, ^{13}N, ^{15}O, $^{17,18}\text{F}$,

Accelerator and production reactions:
- 10 MeV cyclotron (p,n) reactions,
- 8MV tandem accelerator (p,n), (d,X) reactions

Nuclear spectroscopy by Low energy resonance and transfer reactions.

Unstable nuclei
Astro-nuclear phys.
- systematic studies
- technical developments
Requirement for RI acceleration or AMS

- Almost 100% injection of DC beams
 - Charge exchange injection with ionization cooling

Ionization cooling:
Compensation of longitudinal energy-loss in a foil by RF acceleration

(Ray-tracing by Miyaoki)
Luminosity is drastically increased by 3-dimensional cooling using a wedge target.
AMS with post-acceleration

e.g. ^{36}Cl 350MeV Full-strip ion beam with 2.5% efficiency*

or $12^+\text{ ion beam with 10% efficiency}^*$

^{41}Ca 400MeV 13^+ beam with 10% efficiency*

Advantage:
- Easy isotope separation for heavy elements

Subjects
- Archeology, Earth science, Life science, ...

Requirement to accelerator
- Acceleration of different isotopes with same parameters
- Charge-exchange injection with ionization cooling

*Except FFAG efficiency
⑤ Irradiation of vertical beams and neutrons

Intense primary beams will be given by negative-ion injection

Use of spallation neutrons
BNCT
material science
nuclear data etc.

primary beam

8m deep pit

Shield
Moderator
Phantom
Sample

vertical irradiation

B1F
B2F
• A FFAG-tandem accelerator facility is under construction

 Construction of the tandem building and movement of Hakozaki facility was decided recently.

• Many kinds of development works and challenges are required for full use of the facility

 I would like to thank Mori-san and other accelerator people for their support.